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Abstract
In this paper, we present our approach to studying bio-inspired navigation strategies on an autonomous flying robot. The
robot is a quadrocopter that is based on technology from Mikrokopter and extended with several sensor systems, most
of them inspired by sensors that animals use for navigating in their natural environment. Using a light-weight embedded
computer from gumstix onboard the copter, the system can be fully autonomous. We present prototypical experiments on
visual homing, self-stabilisation using optic flow, and altitude control using evolutionary strategies.

1 Introduction

Despite many years of research and development, au-
tonomous navigation is still an open challenge for robotics.
Traditional approaches such as SLAM (simultaneous lo-
calisation and mapping) require a highly structured en-
vironment and accurate and stable sensory information.
When bringing in another dimension and expanding the
challenge of autonomous navigation to small flying robots,
most traditional approaches fail due to additional con-
straints and conditions such as fast changing sensory data,
weight limitations for the sensor system, higher dimen-
sionality of the state space and the system being prone to
external manipulations more easily.
There are currently no artificial systems that solve all these
challenges, but there is evidence that autonomous flying
systems exist that can navigate in new, changing and un-
structured environments: flying insects. By looking at the
principles of the navigation strategies of these insects and
their adaptation to body and environment, it might be pos-
sible to construct artificial systems with similar capabili-
ties. The navigation strategies of animals on the ground
have already successfully been tested on wheeled mobile
robots; see for example the Sahabot project[1].
We present an approach to studying bio-inspired navi-
gation strategies using a lightweight quadrocopter based
on Mikrokopter[2] technology and extended with several
bio-inspired sensor systems. For self-stabilisation, the
Mikrokopter sensors and software are used. These consist
of a three-axis acceleration sensor and three gyroscopes.
Processing of the navigation strategies and communication
with the flight control board is performed onboard on a
gumstix[3] embedded computer.
Our bio-inspired sensor approaches so far include a pan-tilt
camera system below the robot used for measuring optic
flow, a camera system constructed using a convex mirror

to realise omnidirectional vision, and a compass based on
the polarisation pattern of the sunlight.
Adaptive control of small aerial vehicles has so far mainly
been tested in simulation[4]. The most common form of
autonomous navigation are waypoint flights using a GPS
system[5]. Grzonka et al.[6] use a smaller laser sensor in
indoor and outdoor flights. Kendoul et al.[7] use optic flow
for an indoor quadrotor helicopter.
Our team will also participate at the motodrone[8] chal-
lenges 2010 just before ISR/Robotik 2010 and share the
algorithms and results there.

2 Quadrocopter platform
The platform presented in this paper is based on the
Mikrokopter[2] construction set. The platform has a
weight of about 1000g including batteries and can carry an
additional load of about 400g. The choice for this set was
made because of its relatively low price, good support from
the user community and, essential for our experiments, the
open-source software. The quadrocopter (or quadrotor) is
a flying robot with four propellers in cross configuration
(see Figure 1). Two of the four propellers rotate clockwise,
the other two counterclockwise. Thus, with all propellers
rotating at the same speed, the resulting torque around the
yaw axis of the whole quadrocopter is nearly zero. Even
when the goal is to just hover in the air without any move-
ments, the quadrocopter is still a dynamically unstable sys-
tem. Thus, to make human or high level autonomous con-
trol possible, the system is equipped with an internal mea-
surement unit (IMU) and a basic attitude control system.
For details about attitude control of a quadrocopter see
Bouabdallah et al.[9]. On top of this system the platform is
controllable in yaw, pitch and roll by changing the relative
rotor speeds and the lift force can be controlled by chang-
ing the speed of all rotors simultaneously[10]. This kind of



control is the starting point for our navigation experiments.
Figure 1 shows a picture of the quadrocopter platform pre-
sented in this paper. The following subsections give an
overview of the sensors, actuators and the system architec-
ture of the platform. Quadrotors are becoming a common
platform in flying robot navigation[11][12][13].

Figure 1: Quadrocopter platform.

2.1 Sensors and actuators

The Mikrokopter is driven by four brushless DC mo-
tors with 10" propellers. The platform is equipped with
the standard IMU sensors – three gyroscopes and a 3D-
accelerometer. The gyroscopes measure angular veloci-
ties up to 300deg/sec, the operating range of the acceler-
ation sensors is ±2g. There is an additional barometric
pressure sensors for altitude control. The granularity of
the altitude measurement is about 10cm. Because of fluc-
tuations in the barometric pressure this is just a theoret-
ical value. These fluctuations increase strongly when ap-
proaching the ground because of the turbulences caused by
the propellers. Therefore this sensor is almost unusable for
autonomous take-off and landing. This is why we extended
the platform with an ultrasonic distance sensor (Devantech
SRF02) facing downwards. The operating range goes from
10cm up to 6m making it ideal for take-off and landing
control. Another extension is a pan-tilt unit with a small
camera at the bottom of the quadrocopter. The pan-tilt unit
is actuated by two micro servos. A simple controller uses
the acceleration data of the IMU to control the camera at-
titude. This way the camera can face downwards indepen-
dently from tilts up to 50◦ of the quadrocopter. This is an
important precondition for the visual approaches presented
below. The camera currently used is a simple low cost USB
webcam (Logitech QuickCam E 3500).

2.2 System architecture

The basic computation unit of the quadrocopter is an At-
mega 644 microcontroller. All sensors and actuators de-
scribed in the previous subsection are directly connected
to this unit. It reads out all sensory data and does the ba-
sic attitude control. The control loop frequency is 500Hz.
As described earlier, we intend to control the yaw, pitch
and roll movements of the quadrocopter on top of the ba-
sic attitude control. Therefore we added a gumstix verdex
computer which communicates with the Atmega controller
with a specified communication protocol. The gumstix can
select a set of sensory data and a sample frequency and
then the Atmega sends out this sensory data with the given
frequency via the UART to the gumstix computer. The
gumstix can do whatever kind of high level control needed
and answer with yaw, pitch and roll commands to the At-
mega. This way high level control frequencies up to 100Hz
are possible. We are currently testing Xenomai[14] to pro-
vide hard real time support for critical control parts. The
gumstix provides the possibility to easily and quickly con-
nect sensors to the platform via standard interfaces. The
camera currently used is simply connected to the USB port.

3 Simulation of the Multicopter
platform

3.1 Framework

In a robotics project simulations come in handy at various
stages of the development process[15], in particular when
evolutionary strategies are involved. It is however impor-
tant to keep in mind the limitations of a simulation con-
cerning real world errors, noise, and complex physics. In
addition to employing micro-simulations within standard
numeric computing packages for partial aspects of the sys-
tem, we have been looking for a complete realtime simu-
lation platform that includes physics as well as an internal
controller architecture.
The initial options have been developing such a platform
from scratch or using existing solutions provided by the
Open Source market. The from-scratch approach was
dismissed as too expensive. The autopilot project that
was used by DeNardi et al.[4] seems to suffer discontin-
ued development since around 2005. Another option, the
Flug-Modell Simulator (FMS)[16] does not run natively
on Linux and, most importantly, no source code is avail-
able for this software. Finally, the crrcsim[17] package was
chosen as a basis for our experiments due to its overall ma-
tureness, modifiability through published sources and the
inclusion of a working multicopter model thanks to com-
prehensive efforts by Jens W. Wulf[18].
Crrcsim provides fine-grained control over various aspects
of the simulation. The system comprises the vehicle model
(geometry, motor attachment points, graphics), rigid body
equations of motion module, flight data model, motor



model, environmental factors such as wind and thermals
and graphical output. The latter can be suppressed to in-
crease overall execution speed if needed.

3.2 Experiments

At the current state of the project, we intend to use the
simulator for the evaluation and verification of different
approaches to controllers and sensory integration. As is
the case with the Mikrokopter[2] hardware and software,
the crrcsim multicopter model comes with attitude and
rate controllers for pitch, roll and yaw. Altitude and po-
sitional PID-controllers had to be added. At first, these
were parametrised empirically.
Since its primary intended use is for training RC-model pi-
loting, the input channels include among others the sound-
card, mouse or keyboard and joystick. For our purposes a
UDP based network input method had to be implemented
so that external programs can interact with the running
simulation. This does not only apply to copter control but
also simulation state control, which is necessary for the re-
alisation of evolutionary and other learning methods.

3.3 Evolution

An initial experiment was to evolve the P, I and D
parameters of the altitude controller using evolutionary
strategies[19].
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Figure 2: Comparison of manually set and evolved PID
parameters. Note the different timescales in the two
plots. Top: (P, I,D)man = (0.05, 0.01, 0.012), Bottom:
(P, I,D)evo = (0.0663, 0.0534, 0.0189).

After bringing the architectural conditions in place, it was
easy to find adequate parameters for the controller in three
evolutionary runs after 30 to 100 generations (Figures 2
and 3) and a population size of 20.
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Figure 3: Evolved controller fitness.

The four fittest individuals were carried over to the new
population (elitism) and the remaining 16 slots were pop-
ulated with offspring generated by selecting parents with
fitness-weighted probabilities and then applying a muta-
tion operator.
As the experiment was rather a proof of concept, fitness
evaluation was based asymmetrically on ascent behaviour.
The copter was supposed to climb to a given altitude set-
point with an initial altitude of zero. Fitness was calculated
by

fitness =
∑

n

|altset[n]− altact[n]|

Management of the evolutionary process and control of cr-
rcsim was implemented in Python.

3.4 Sensor fusion

The individual’s fitness in the evolutionary process de-
scribed above was evaluated using the exact altitude value
available from the flight data model. As a next step we
chose to simulate noisy sensors modelled after those ac-
tually available on our hardware. These are a baromet-
ric sensor and sonar. The barometric sensor works over a
larger range of actual altitudes but is subject to slow pres-
sure drifts, ground effect and various other unwanted in-
fluences. The ultrasonic sensor is more precise but only
within the range of approximately 0.1 up to 6.0 meters.
Also, the sensor update rate depends on the actual distance
being measured, since it is TOF based.
After modelling of the individual sensor characteristics, we
have looked at and implemented a Kalman filter (KF) for
fusing these two sensory channels into a single altitude
estimation[20, 21]. Even with minor investment in mod-
elling, this setup works already very well and is awaiting
verification on the hardware.
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Figure 4: Close-up of Kalman filter output alongside with
raw sensor values and simulation state.

3.5 Outlook
We plan to test several more modules within the given
simulation framework. These include different types
of neural-networks as controllers for the tasks described
above as well as simulating onboard camera-sensors to be
able to refine the optic-flow based approaches to copter
control and navigation.

4 Visual approaches based on Optic
Flow on the Quadrocopter

Many insects apply optic flow techniques to estimate ego-
motion, avoid collisions with obstacles and land smoothly
on objects or the ground. This ability is already hard-
coded in their nervous system by elementary motion detec-
tors (EMD). In our approach, we use first order differential
methods for detecting optic flow since they do not require
object recognition and are therefore not too computation-
ally intense. We are currently testing different methods
to adaptively correct egomotion sensed by using the optic
flow information.
We decided to implement our vision algorithms within the
OpenCV[22] framework, as it was designed for computa-
tional efficiency and provides a simple-to-use computer vi-
sion infrastructure. A further advantage of OpenCV is the
availability of precompiled packages for OpenEmbedded
which makes it easy to install on gumstix.

4.1 Calculating Optic Flow
The initial hypothesis behind differential methods is that
the image intensity I is approximately constant under mo-
tion (u, v). Following the standard approach to differential
techniques[23], a first-order Taylor series expansion can be
applied to obtain

Ixu+ Iyv + It = 0, (optical flow constraint equation)

where Ix, Iy , and It denoting partial derivatives with re-
spect to the coordinates (x, y) and time t. The optical flow
constraint equation is one linear equation in the two un-
knowns u and v and therefore ill-posed. Thus, we add the
constraint that the image velocity (u, v) has to be aligned
with the image gradient. This yields in(

u
v

)
=
(
Ix
Iy

)
−It√
I2
x + I2

y

.

It is recommended to use the gradient magnitude as a relia-
bility measure, i.e. to set the velocity to zero if the gradient
magnitude is below a given threshold.
Although the algorithm is computational easy, it is diffi-
cult to guarantee short time intervals on general purpose
hardware like our gumstix with a webcam connected to
USB. Another approach is to turn to region-based match-
ing, which defines velocity as the shift that yields the best
fit between regions at different times. The main advantage
of this approach is the handling of large displacements. A
promising method is presented by Fridtjof Stein[24] which
uses the Census Transform as the representation of regions
and matches them using a table based indexing scheme.

4.2 Egomotion

Egomotion of the quadrocopter can best be measured by
fusing information from inertial sensors and visual optic
flow data. Since the quadrocopter has 6 degrees of free-
dom, it is difficult to estimate the egomotion only from a
2D image. To simplify our model, the 3 degrees of rotation
can be derived using the information from the gyroscopes.
The altitude is given by the barometric sensor and sonar,
so that the best camera orientation seems to be parallel to
the ground plane. Instead of doing an expensive image
transformation, we compensate the observed motion along
roll and pitch angles. This is accomplished in hardware by
coupling the integral part of the gyroscopes with the pan-
tilt camera mount. The remaining estimation of translation
in the xy-plane is inversely proportional to the altitude and
can be added to the stick values for pitch and roll using a
simple PD-controller.

4.3 Outlook

In addition to lateral self-stabilisation, optic flow methods
will also be applied for autonomous take-off and landing,
obstacle avoidance and path integration. One approach to
solve the speed problem of calculating optic flow is the use
of an FPGA which will be developed as part of a diploma
thesis. Optic flow is an ideal application for parallelisation.
Other approaches of using optic flow for UAV control have
been presented in [11] and [7].



5 Local Visual Homing
In spite of their tiny brains, insects have some impressive
navigation skills. One of them is the ability to return to
previously visited places by using visual sensory data. In
order to achieve this, they compare a stored representa-
tion (referred to as snapshot) of their visually perceived
environment at the goal position with the currently avail-
able visual sensory data (referred to as current view)[25].
From this comparison, a so-called home vector pointing
to the goal position is derived[26]. In recent years, many
algorithms have been developed for robot navigation that
are based on the snapshot model just described. In gen-
eral, these local visual homing methods primarily use the
current visual sensory data and an internal representation
of the goal or home position, but they do not need addi-
tional information concerning the environment nor has a
self-localisation task to be solved. For this reason the re-
quired computational effort is relatively small, yielding an
implementation on an embedded computer like the gum-
stix.

5.1 Warping

One of these local visual homing methods that we are cur-
rently testing is the warping method suggested by Franz et
al.[27]. Like most methods of its class, warping is based on
the processing of omnidirectional panoramic images. That
is why we constructed an omnidirectional camera system
for our quadrocopter, based on a camera pointing towards
a small hollow shiny half sphere. In figure 6, a sample pic-
ture taken by the omnidirectional camera system in the air
on our quadrocopter is shown. We are well aware that the
shape of the mirror is not optimal, however it is sufficient
for our purposes and very light-weight.
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Figure 5: Warping – geometric relations.

The main idea is to distort the current view according to
some parameters, which describes the movement of the
agent, in order to get a warped version of this image. In

this way the snapshot can be approximated and finally the
direction to the snapshot position can be determined.
Let S be the snapshot (or goal) position, C the current po-
sition and L a landmark in the environment (see Figure
5). At position S the agent is oriented as indicated by the
thick arrow and perceives L under the horizontal angle Θ.
If it moves in direction α relative to its initial orientation
and travels a distance d, it arrives at C. The movement is
completed by a rotation ψ. The landmark L is still per-
ceivable at position C, but appears under the angle Θ + δ
now. Under the equal distance assumption (EDA), which
means that all landmarks are located at the same distance
from S, a warp function can be derived from the geometric
relations shown in Figure 5 such that

Θ + δ = warp(Θ|α,ψ, ρ) || ρ =
d

r
,

where ρ is the relative distance due to the EDA. We have
to take this assumption, because r and r′ are unknown
without additional knowledge about the environment. Al-
though the EDA is usually violated, warping delivers fairly
accurate home vectors[27, 28]. Within an exhaustive min-
imum search through the parameter space with respect to a
distance measure between the images, the warp function is
used to distort the current view according to a given set of
parameters (α,ψ, ρ).

Figure 6: Omnidirectional camera image taken on a
quadrocopter flight.

Concerning our project, we have to deal with two problems
here. First, as a function of the chosen resolution the search
space gets really large and furthermore it is interspersed
with local extrema, which inhibits the usage of gradient de-
scent methods. Second, in the original version by Franz et
al.[27] the warp function has to be applied in every search
step, which accounts a high computational effort. That
is why the original version (referred to as 1D-warping) is
only practically feasible if the panoramic images are one-
dimensional. Even so, the limited computational power in
conjunction with the absence of a floating point unit leads
to unacceptable runtimes on the gumstix. Over and above,



1D-warping is not competitive nowadays because it is out-
performed by modern optic flow methods[28].
Fortunately, there is a reformulated version of Franz et
al.’s warping suggested by Möller[28] (referred to as 2D-
warping), which solves most of the problems just men-
tioned. As its name implies, 2D-warping processes two-
dimensional panoramic images, which in contrast to 1D-
warping makes it unnecessary to drop useful information
provided by our omnidirectional camera system. A signif-
icant decrease of the overall runtime is achieved by using
lookup-tables to store as many precalculations as possible.
More in detail two lookup-tables are created: A warp ta-
ble to store the image of the warp function with respect
to the search space as well as the width of the panoramic
images and a so-called distance image to store all possible
column comparison results between snapshot and current
view (given a distance measure).
One problem remains at this juncture: Due to the poten-
tially high number of search steps the warp table can be
very large. For instance if one chooses 72 search steps for
α, 72 search steps for ψ, 20 search steps for ρ and if the
image width is 295, the necessary memory size is roughly
58 MB. This would require nearly half the amount of the
gumstix’ RAM, which is definitely too much in order to
be used in our case. Fortunately, warping is very robust
with respect to the decrease of the number of search steps
and thus small-sized warp tables can be constructed with-
out losing too much accuracy.

5.2 Outlook
At the current stage we are optimising our implementation
of the 2D-warping and we are preparing online tests on
our quadrocopter. Besides we are planning to integrate our
sensory compass data into the warping process in order to,
on the one hand, further reduce the overall runtime and, on
the other hand, increase the accuracy.

6 Conclusions
Our system can be used to test different hypotheses on
navigation behaviour in animals and extract principles of
this behaviour to realise fully autonomous flying robots.
We composed a system that fulfils most of the require-
ments for an autonomous light-weight bio-inspired fly-
ing robot. Specifically, we showed experiments on au-
tonomous altitude control using evolutionary strategies, a
pan-tilt camera system that measures optic flow for lateral
self-stabilisation and a 2D image warping method based on
omnidirectional images taken with a special camera sys-
tem.
There are a variety of interesting real-world applications
for autonomous flying robots ranging from disaster man-
agement, to surveillance, to applications in precision farm-
ing. We have currently started a project for the lat-
ter application with several other partners (see http:

//agricopter.de/ for reference). There, we will de-
velop an autonomous flying robot for creating aerial maps
of fields that can be used for heterogeneous fertilisation.
For practical reasons, this system will be extended with
GPS in addition to other more biologically inspired sen-
sors and strategies.
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