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Summary. This chapter attempts to show how cognitive map models can be com-
bined with robotic navigation strategies. A neural cognitive mapping strategy that
is inspired by place cells but still abstract enough to be interpreted in a meaningful
way is implemented in different experiments with both mobile robot and simulation
experiments.

1 Introduction

The ability to navigate in a complex environment is one of the most challenging
skills for every animal on this planet. It is crucial for survival, and is even seen as
the evolutionary pressure to develop brains. The reason why plants do not have a
brain is that they do not have to move [Wol02].

There are different amounts of cognition involved in navigation when consider-
ing different species and different goals. This starts with simple aiming and obstacle
avoidance already present in one-cell organisms, over route-following for example in
insects, to high-level survey navigation which includes both topological and metric
information. A useful categorisation of these different skill levels of navigation is
presented by Franz et al. in this volume.

The approaches to navigation involving cognitive mapping that this book fo-
cuses on, are mainly found at the levels of topological and survey navigation. These
approaches require some kind of internal representation of the space the animal is
navigating in. However, complex navigation, such as finding back home from various
locations on paths never travelled before, is also possible without a full representa-
tion of the environment, for example in insect visual homing. Here, the animal can
reach the goal position from its current position by comparing visual snapshots in
memory without knowing about the location of the goal position nor the current
position [Haf04].

There is also evidence from the neurosciences for an internal spatial map: In
these experiments (see for example [O’K76], cells have been found in the rat’s brain
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that represent a certain place within the environment, and may therefore be part of
a so-called cognitive map for the animal. These cells are called ‘place cells’ and are
located mainly in the hippocampus, an area in the brain which is also responsible
for memory [RH96]. Such cells have been found in rats, mice, and even primates
including humans. However in primates, additional cells, called ‘view cells’, that are
related both to a particular place and view have been found.

Biologists [WR79] and neuroscientists [O’K76] have been studying navigation
behaviour in animals for several decades, coming up with different hypotheses of
how the navigation skills are acquired and implemented in the animal’s brain and
body. With the advent of behavioural [Bro91] and biomimetic [Web01] robotics,
a new field of research got interested in navigation behaviour. These subfields of
robotics are inspired by biology, in particular using behavioural experiments. In
these experiments, the interaction between the agent and the environment plays
a major role. The morphology of the agent with the arrangement of different sen-
sors along its body is also very important for the interaction [PB06]. Traditional or
industrial robotics in contrast is only interested in fulfilling a task in a controlled
and predictable way using methods such as planning. Along with biorobotics came
several advantages which promised to strengthen or falsify the hypotheses of biolo-
gists by repeatable experiments using mobile robots. A good review on bio-inspired
robot navigation can be found in [TWBMO97]. Recently, the robotics community is
focussing more and more on hybrid approaches [AC04, TS05] to find a good balance
between engineering and biological plausibility.

In this chapter, a neural cognitive map model inspired by place cells, imple-
mented on a mobile robot is presented. In chapter 2, the neuroscientific foundations
of place cells are explained and some particular properties are discussed. Chapter 3
presents the neural cognitive map algorithm and structure, and different experiments
on a mobile robot and in simulation are shown and their results discussed.

2 Neuroscientific Foundations: Place Cells

Place cells were first discovered in the hippocampus of rats [O’K76]. They are cells
whose firing activity depends on the spatial position of the animal in its environment.
This implies some sort of internal representation of the outside environment in the
brain. There is similar evidence of cognitive maps in humans. We present some of
the experiments measuring cells in the human hippocampus in the next subsection.
Spatial information is an important part of long-term memory, therefore it is also
interesting that the place cell activity seems to be transferred into long term memory
during sleep, which is presented in the subsection after that.

2.1 Place Cells in the Human Hippocampus

Place cells have also been found in the hippocampi of humans recently [EKC'03,
ECH™05]. Cells in the hippocampal and parahippocampal region of patients with
epilepsy were recorded with implanted clinical depth electrodes. During the record-
ing, the subjects were exploring and navigating a virtual town in a taxi driver com-
puter game, searching for passengers and delivering them to fixed target locations.
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Out of 317 recorded neurons, 26% responded to a place, 12% responded to a view,
and 21% to a goal. Eleven per cent of the cells were true place cells, which only
responded to a place. From the 67 neurons measured in the hippocampus, 24% were
true place cells. These findings can be seen as evidence for a neural code of human
spatial navigation, a cognitive map.

2.2 Place Cells during Sleep

Hippocampal place cells have also been recorded during rat’s rapid eye movement
(REM) sleep’. Wilson and McNaughton [WM94] discovered that cells that fired
together when the rat occupied a particular location exhibited an increased tendency
to fire together during subsequent sleep, in comparison to sleep episodes preceding
the behavioural tasks. In these experiments, 50 to 100 single cells in area CA1 were
recorded. They suggest that the neural states encoded within the hippocampus are
“played back” as part of a consolidation process by which information is gradually
transferred to the neocortex.

3 Robotic Experiments: Cognitive Maps

This section describes experiments performed with navigating artificial agents. The
experiments are inspired by the findings of place cells in rats, and aim to produce
a cognitive map of an environment during exploration. The question is, whether a
neural representation can be found that explains the findings and properties of place
cells for navigation in rats.

3.1 Experimental Setup

The experimental setup consists of an artificial agent (mobile robot or simulated
agent) that performs random exploration tours within a newly encountered open
environment with objects functioning as obstacles. The agent has omnidirectional
sensory stimulation, either panoramic vision or distance sensors. A benefit of omni-
directional vision is that it approximates more closely the rat’s field of view spanning
320°, making the sensory input more comparable between rat and robot. The agent
gets proprioceptive feedback about its heading direction, but does not have access
to any exact metric distance information, nor does it know its position within the
environment. The learning of a cognitive map is purely based on neural plasticity
(changing weights) within the agent’s brain, using a variant of a self-organising map
(SOM). The number of recruitable place cells, i.e existing cells that could function
as place cells, is fixed at the beginning of the experiment. During exploration, the
agent gets a new visual input every few time steps. The exploration of the environ-
ment is open-ended without being task-specific. There is no reward during learning
nor is there a goal state. This setup is comparable to rats exploring a newly en-
countered environment before eating even if they are hungry[Pre96]. The attributed
motivation for this behaviour is curiosity.

! REM sleep: periods of mental activity during sleep
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Fig. 1. Cylinder environment and visual information of the agent. In this figure,
the omnidirectional binary view of an agent at two different positions is shown
(connected by the line). Filled circles are obstacles of different sizes.
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Fig. 2. Neural Network structure for learning of place cells and their connections.
The cells in the output layer are place cells. The input layer consists of the sensory
input from the robot.

The neural network representing the cognitive map is similar to Kohonen’s
[Koh82] self-organising map (SOM), where the map layer neurons represent the
place cells. As in Kohonen’s SOM, there is a winner neuron for each visual input
with the strongest activation in the map layer whose connections to the input layer
will get strengthened. The main difference, however, is that the neighbourhood re-
lationship in this cognitive map model is not fixed. This follows from properties of
neural place cells: they do not have a geometric connectivity as standard SOMs do
have. During learning, the connections between the current winner cell w; and the
previous winner cell w;—; are strengthened, resulting in a topological map of place
cells with a variable number of connections per cell. One of the reasons for this
choice is that there is no apparent relation between the spatial positions of place
cells within the hippocampus and their corresponding place fields within the envi-
ronment. Since the movement of the agent is continuous in space over time, place
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cells representing adjacent places get connected. The topological map represents a
relationship within the sensory space of the agent, and does not explicitly map the
two-dimensional Cartesian space (we only consider agents moving on a plane). The
map learning parameters were selected empirically in one experiment [Haf00Ob], and
evolved using evolutionary strategies in another one [Haf03]. The parameters are
the learning rates of both connection and input weights.
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Fig. 3. Visual processing of the omnidirectional camera data from the mobile robot.
The three steps are projection, horizontal averaging and low-passfiltering.

The available sensory information varied between the different experiments. In
the case of the mobile robot that navigated in a standard office room using a compass
and an omnidirectional camera, a 16-dimensional transformation of the omnidirec-
tional camera image serves as sensory input to the neural network (see figure 3).
These are equidistant visual input features based on an angular resolution of 22.5
degrees, horizontal averaging and low-pass filtering. In the simulation environment,
90-dimensional binary input from the cylinder world (see figure 1) has been used.
Here we use only the information whether there is an obstacle in view at a certain
angle or not. The problem of choosing the right sensory information is directly re-
lated to two complementary problems of reliable place recognition [KHO02]: The first
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is perceptual aliasing, which means that different places may have similar or even
identical sensory information. The second is image variability. The same position
and orientation may have different sensory information at different points in time.
Possible reasons are sensory noise, motor noise, or simply change in illumination.

In contrast to the sparse topological representation of this approach, Arleo and
Gerstner [AG00] use a population of place cells with overlapping place fields. A
similar approach has also been taken by Gaussier et al. [GRBB02].
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Fig. 4. Place fields after an exploration tour in a virtual environment with random
learning parameters (left) and evolved learning parameters (right). The cylindrical
objects (dark blue) are obstacles of different size. The coloured regions represent the
different place fields. The black lines connect the centres of mass (the most sensible
definition of a centre for an area with undefined shape) of the connected place cells
within the environment.

3.2 Density of Place Fields

After an exploration tour in the simulated environment of figure 1, we can see that
the same place cell is firing in certain restricted areas. We call these areas ‘place
fields’. An interesting aspect of the learned place fields after the exploration tour
is that their number is significantly higher in the vicinity of objects (see figure 4
right, or other place field figures in [HafOOb]). This property has also been observed
during electrophysiological recordings in rats, and tends to be explained by rats us-
ing a higher proportion of their place cells for ‘interesting’ places (for a review see
[HDMMO1]). Since neither the simulated nor the physical mobile robot have any
concept of what counts as interesting, the explanation is simple: The visual input
(sensory information) is changing more rapidly when moving close to convex obsta-
cles, and therefore more place cells will be recruited for this space. This effect has
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been explicitly encoded as a threshold for building new nodes in the graph algorithm
by Franz et al. [FSMB98].

3.3 Extracting Metric Information

The map of the agent built from the place cell information and their connections is
purely topological. However, it can be extended by using the additional information
on heading directions between two place cells. Physiologically, this additional infor-
mation might be accomplished by intersynapse connections between head direction
cells and place cell connections. To enable the extraction of metric information from
a topological map, a theoretical force model [Haf00a] is introduced, which is ideal for
energy minimisation and assumes place cells as repulsive charges ¢; and connections
as springs s;i connecting the cells (see figure 5). The spring constant for all springs
is set to the same value based on the assumption that all directly connected places
have the same distance. This is a generalisation since we have seen that there are
place fields of different shape and size, however it is also clear that the distances of
connected places are not too different, since two far-away places are linked by places
between them. The initial position of the cells is random in R?. By repeatedly ap-
plying forces to the charges, their position converges to an energy minimum. The
forces consist of an attractive spring force, a repulsive force and a third force caused
by the preferred orientation of the connecting weight. Duckett et al. [DMS02] pro-
posed a slightly different algorithm called the ‘relaxation algorithm’ which is based
on similar principles, but additionally assumes distance information between the
nodes, and assigns a position likelihood to them. The algorithm is computationally
cheap, and ensures that an optimal solution will be found.

Fig. 5. Force model based on different forces applied on the place cells: an attractive
spring force, a repulsive force and a third force caused by the preferred orientation
of the connecting weight.

3.4 Evaluation Methods

Evaluating the usefulness of the learned cognitive map for robot navigation is dif-
ficult. In principle, we can distinguish three main approaches to the problem of
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Fig. 6. Activation of six different place cells after an exploration tour in the virtual
environment. The dark blue circles represent the obstacles.

evaluating the cognitive maps. First, the evaluation can be based on the properties
of the map itself, such as the shape of place fields or the properties of connections
between place cells (see figure 4). Second, the learning strategy of the cognitive map
can be evaluated by assessing the behaviour of a navigating agent after exploration.
And third, both properties of the cognitive map and the resulting navigation be-
haviour can be directly compared with those of a navigating animal. Let us first
consider the method of analysing properties of the cognitive map: Statistical prop-
erties such as density, shape, and number of place fields; activity and number of
connections per place cell, or metric versus graph distance in the topological map
can be collected and analysed easily in simulation. On a mobile robot, additional
difficulties arise since these data can only be collected having an accurate tracking
system and having access to the sensory input for every position of the robot in
space, ideally requiring a large image database.

The activity shapes of single place cells after an exploration tour in the virtual
environment using the optimised cognitive map learning strategy can be seen in
figure 6. The place field shapes are very similar to place fields of cells in the rat
hippocampus, also showing a general exponential decay of activity away from the
centre of the place field. Place fields near walls also have a tendency to be more
elongated than place fields in the centre of the area, which tend to be more circular.

Assessing the behaviour of an agent to evaluate the cognitive map gives a good
fitness measure, since it is focused on the behaviour, but has additional difficulties,
since the number of exploration runs and navigation runs between two arbitrarily
chosen places within the environment has to be huge in order to be meaningful. The
problem with comparing robot and animal behaviour is, that both the environment
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and the available sensory information should be comparable. An approach for eval-
uating a cognitive map learning strategy where the parameters have been evolved
using evolutionary strategies can be found in [Haf03].

4 Conclusions

This chapter has given an example of how neural cognitive maps can be implemented
in robotic experiments. For simplicity, some of these experiments were performed in
simulation. One of the important features of the resulting neural cognitive maps is
that it includes both topological and metric information about places. The difficulty
is to realise the integration of these informations with a restricted amount of mem-
ory (number of place cells and their connections), and without building a geometric
world model.

On the one hand, research on cognitive maps for robots has the advantage of ex-
ploiting biological principles of navigation for building more reliable robots, and on
the other hand, robots are ideal tools to test specific hypotheses on the underlying
functions of navigation behaviour in animals. The first point is important in particu-
lar for robot navigation in dynamic environments, and in environments, where GPS
is not applicable, such as in many indoor environments, underwater and extrater-
restrial. To test biological hypotheses, the important argument is the repeatability
of robotic experiments and the easy access to internal states.
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