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Cognitive Maps in Rats and Robots

Verena V. Hafner
Sony CSL, Paris, France

More is known of the navigation skills of mice and rats than of any other vertebrate. The discovery of

place cells (cells whose firing rate correlates with the spatial position of the animal) in the rat’s hippoc-
ampus has inspired various attempts to model these cells. This work presents one such model which

has been optimized on simulated autonomous agents and implemented on a mobile robot which

learns to navigate within its environment through exploration using vision as its main sensory modal-
ity. The artificial mouse robot aMouse, a mobile robot with active whiskers and omnidirectional vision,

is presented as an ideal robotic platform to study rodent navigation. The visual field of the robot is

similar to the large visual field of rats and mice, and its whisker system uses real rat whiskers for tex-
ture recognition. The paper suggests how tactile information from the active whisker array on the

robot can be used as an additional sensory modality for the place cell model described earlier.

Keywords cognitive maps mobile robots · navigation · place cells · rat whiskers · artificial mouse

1 Introduction

Rodents are amazing navigators which can rely on a
range of different sensory cues. Rats and mice, for
example, rely on visual and olfactory cues for navi-
gation, but also possess whiskers which enable them
to discriminate textures of different roughness by
actively whisking the surfaces (Carvell & Simons,
1990; Guic-Robles, Valdivesco, & Guajardo, 1989).
Many intelligent mobile robots are inspired by bio-
logical findings, both in their morphology and their
behavior. One example of such a robot is the artifi-
cial mouse robot aMouse that has been developed at
the University of Zurich (Artificial Intelligence Lab-
oratory, 2004). This mobile robot is equipped with
omnidirectional vision and an active array of whisk-
ers. The whisker sensors of aMouse are unique in the
sense that they consist of real rat whiskers attached

to microphone membranes in order to produce high-
resolution sensor data.

In this paper, we consider biologically inspired
cognitive map models, which provide an artificial nav-
igating agent with a topological map of places that can
be enhanced with additional metric information after
an exploration and learning phase in a previously
unknown environment. Similar models and implemen-
tations can also be found in Schölkopf and Mallot
(1995), Arleo and Gerstner (2000), Hafner (2000a),
Gaussier, Revel, Banquet, and Babeau (2002), and Fil-
liat and Meyer (2002). A cognitive map model which
mainly relies on visual information is presented and
tested in a simulated environment, which allows for
parameter optimization using evolutionary strategies
(ES) (Rechenberg, 1973). The model has been applied
to a mobile robot platform using an omnidirectional
camera as the main sensory modality. Finally, we will
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discuss how the cognitive map model could be imple-
mented on the aMouse robot using both vision and tac-
tile information from its whiskers.

2 aMouse: An Artificial Mouse Robot

aMouse is based on a Khepera platform with two
active artificial whisker arrays and an omnidirectional
camera (see Figure 1). This robot has been designed in
close cooperation with biologists and neuroscientists
to serve as a tool for studying biological models of
rodent behavior. We designed and built an artificial
whisker system to record tactile data signals similar to
those rats are exposed to with their whiskers.

Rats can distinguish surface properties purely on
the basis of cues from their whiskers (Guic-Robles
et al., 1989; Carvell & Simons, 1990). They can fur-
thermore use their whiskers to discriminate objects
(Brecht, Preilowski, & Merzenich, 1997) or simply to
perform obstacle detection. As the rat explores its
environment, its whiskers are moved over surfaces of
various shape and texture. Whiskers are often used as
a replacement for vision when this sensory modality
is not available, or in addition to increase accuracy.

The desired artificial whisker should be function-
ally comparable to a natural rat whisker and therefore
be sensitive to small amplitude deflections and fast
oscillations. We investigated different designs, includ-
ing piezo-electric crystals and small capacitor micro-
phones. The influence of different whisker materials
(metal wire, polyvinyl, human hair, rat whiskers) has
also been compared (Lungarella, Hafner, Pfeifer, &
Yokoi, 2002). We found that the natural rat whiskers
had the most diverse frequency spectra when moved
over different textures. The whisker sensor consists of
a rat whisker attached to the diaphragm of a capacitor
microphone with cyanoacrylic super-glue. Vibrations
and displacement of the hair results in deformations of
the microphone membrane. The resulting change in
voltage is pre-amplified and digitally recorded.

One preliminary experiment that used the active
whisker array studied the discrimination of different
textures (Fend, Yokoi, & Pfeifer, 2003). In another
study (Hafner, Fend, König, & Körding, 2004), we used
sparse coding techniques on a group of artificial
neurons which received their input from whisker data
recorded with the artificial whisker system. This
method allowed us to preprocess the original signal
into a much sparser signal using the independent com-
ponents. In addition, we predicted some properties of
receptive fields of neurons in the somatosensory sys-
tem of the rat.

Some navigation experiments have already been
performed using the aMouse robot. One is an experi-
ment on phototaxis with a subsumption architecture
for light following using infrared (IR) sensors and
obstacle avoidance using the artificial whiskers (Fend,
Bovet, & Hafner, 2004). Another experiment imple-
mented visual homing using the average landmark vec-
tor (ALV) model (Lambrinos, Möller, Labhart, Pfeifer,
& Wehner, 2000) on the aMouse robot using the omni-
directional camera. An important future experiment
will be the combination of visual and tactile sensory
information for cognitive map learning.

Apart from aMouse (Artificial Intelligence Labo-
ratory, 2004), there are three other projects that have
the goal to build an artificial mouse that has whiskers.
These are Psikharpax (Meyer et al., 2005), WhiskerBot
(Adaptive Behavior Research Group, 2004) and Dar-
win IX (Seth, McKinstry, Edelman, & Krichmar, 2004).
aMouse has the advantage of having roughly the size
of a rat and is therefore able to use real rat whiskers for
its active whisker system.

Figure 1  Picture of the aMouse robot with whiskers and
omnidirectional camera.
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Hafner Cognitive Maps in Rats and Robots 89

3 Navigation Strategies

The navigation strategies of animals can be catego-
rized according to their complexity, ranging from sys-
tematic search at the simplest end of the spectrum to
complex wayfinding, with intermediate strategies such
as local visual homing (Trullier, Wiener, Berthoz, &
Meyer, 1997; Franz & Mallot, 2000). The same cate-
gories can be applied to the behavior of mobile robots
or simulated agents navigating in their environments,
where the choice of the navigation strategy is usually
both task dependent and dependent on the sensory
information available to the agent.

More complex navigation strategies require an
internal (neural) representation of the environment
and are often referred to as “cognitive maps” (O’Keefe
& Nadel, 1978). Neurophysiological and behavioral
experiments suggest that rats and primates use cogni-
tive maps for navigation, whereas most insects have to
rely on more basic navigation strategies. The cogni-
tive maps referred to here are based on the following
principles: place cells are neurons found mainly in the
hippocampus of rats, their activation is dependent on
the location of the rat within its environment (O’Keefe
& Nadel, 1978); head direction cells are neurons
whose activity is dependent on the orientation of the
rat’s head within the environment (Taube, Muller, &
Ranck, 1990); place fields are areas in the environ-
ment where a particular place cell has the strongest
activation.

The evidence for cognitive maps in animals has
inspired roboticists to implement those biological find-
ings to allow for stable and adaptive navigation behav-
ior in mobile robots coping with (partly) unknown and
ever-changing environments. Franz and Mallot (2000)
introduced a categorization scheme of navigation strate-

gies, which is now widely accepted by many research-
ers. Their navigation scheme is a modification and
extension of the navigation scheme by Trullier et al.
(1997), and different from the scheme by Redish (1999)
which mainly categorized rodent navigation based on
the watermaze task. Following Franz and Mallot’s
scheme, navigation strategies can be categorized into
two types: Local navigation and wayfinding. What
distinguishes the two is that in local navigation, the
only information the agent has to keep track of is how
to find its way back to the home position, whereas for
wayfinding, a more general knowledge about the world,
including the representation of several places in mem-
ory is required. Examples for local navigation are aim-
ing and guidance. Guidance behavior has been intensely
studied in the form of visual homing on the desert ant
Cataglyphis (Wehner & Räber, 1979; Wehner,
Michel, & Antonsen, 1996), and formalized into a
model by biologists and roboticists (Cartwright & Col-
lett, 1987; Lambrinos et al., 2000). Guidance naviga-
tion involves remembering the geometric relation of
the goal position to a certain spatial constellation of
objects or landmarks that can be detected from this
position. Moving in a way to attain this constellation
brings the agent to its goal. Rodents use a combination
of different navigation strategies, both local strategies
and wayfinding, depending on their internal state and
the available sensory information.

An example for the advantage of combining dif-
ferent navigation strategies can be found in Figure 2.
A virtual agent is put on the left side of the arena in
Figure 2 left, with the task of finding the goal marked
on the right. The direct way to the goal is blocked by
an obstacle, and there is an additional obstacle or land-
mark on the upper right. Visual homing or aiming
alone does not work in this case. If the agent had cre-

Figure 2 Example of an environment where visual homing alone does not lead to good navigation, but the combina-
tion of cognitive maps and visual homing does. The starting position of the agent is on the left side of the wall, the goal
position is on the right side. Left: only visual homing fails. Center: place fields created after an exploration tour in the en-
vironment. Right: a combination of visual homing and cognitive mapping leads the agent to the goal position.
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ated a cognitive map with place fields as depicted in
Figure 2 center, it is possible to use visual homing to
navigate from place field to place field as demon-
strated in Figure 2 right.

4 Cognitive Map Learning Model

Here we present a model that allows an agent to build
a topological map of places that can be enhanced with
additional metric information after an exploration and
learning phase. A review of different map building
and path planning strategies can be found in Meyer
and Filliat (2003).

4.1 Exploration and Learning

In this section, a cognitive map model inspired by
place cells is presented. An example with an agent that
learns how to navigate in a virtual environment using
this model is shown. During an exploration phase, the
agent has the task of learning a map of the environ-
ment using its internal neural structure such as place
cells and lateral weights. The usefulness of the cogni-

tive map for a specific environment depends on the
exploration and map learning strategy.

The environment consists of a plane with 12 cyl-
inders of different diameter (see Figure 3). The agent
is equipped with a compass and omnidirectional one-
dimensional view with a resolution of 90 pixels. The
visual information of the agent is always rotated
according to the compass value so that for a given
place the view is the same and does not depend on the
current orientation of the agent.

The agent starts with a given number of place cells
which are initialized at the beginning with random
weights w to the visual input v. It performs random
exploration tours within the environment, avoiding
bumping into the obstacles. At each step, the current
view is taken, resulting in a certain neural activation a
in the place cell layer:

a = f(vw) = tanh(vw) (1)

f is a sigmoid function, the view vector v and the
weight vectors w are normalized. The place cell with
the highest activation for a particular view is called
the winner cell.

At each step, the weights w of the winner cell (2)
and those of the previous winner cell (3) are updated
using a Kohonen learning rule and then normalized:

∆w = η1(v – w) (2)

∆w– = αη1(v – w–). (3)

The lateral weights wl between the winner place cells
at time t and t – 1 are updated using a Hebbian learn-
ing rule:

∆wl = η2a
t
wat – 1

w (1 – wl). (4)

A decay factor is then applied to all lateral connec-
tions: wl  =  δwl.

Since two views at different positions could look
similar (perceptual aliasing), the activation of the
place cells also depends on their connectivity to previ-
ously active cells. We can include the strength of the
connection:

ct = β1wla
t – 1 (5)

and also the movement direction of the agent:

Figure 3 Virtual environment for the robot navigation
experiments. The environment consists of a plane with 12
cylinders (shown from above) of different size. The ring
shows an example of an omnidirectional view in this envi-
ronment with a projection of the landmarks.
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ot = β2 cos(γ)at – 1 (6)

where γ is the angle difference between the current
and the stored orientation between two places. Infor-
mation on the connection and the connection heading
of two place cells representing adjacent places is—for
simplicity—directly encoded, instead of being availa-
ble through head direction cells:

a = f (vw + c + o). (7)

Free parameters are the learning rates η1, η2, α and
factors β1, β2 for the influence of connections c and
orientation o.

In Figure 4 top, the place field representations
after an exploration tour of the agent are projected
onto the two-dimensional environment. Areas with
the same grayscale value are represented by the same
place cell. Figure 4 bottom shows the topological
graphs corresponding to the place fields. The centers
of mass of these place fields are shown with variable
sized circles indicating the roundedness r:

where µp is the center of mass of the place field for
place cell p, xi a position on the grid where p is the win-

Figure 4     Top: Maps of the environment with black disks indicating obstacles, and gray shadings indicating the differ-
ent place fields after the agent has explored the environment. Bottom: The centers of the place fields are interconnected
as specified by the weights. Left: Random parameters. Right: Parameters are optimized by evolutionary strategies.

rp
1
n
--- xi µp–( )2

i
∑=
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ner cell (place cell with highest activation), and n the
number of these positions. This is a measure for the
variance in distance between each grid point belonging
to the place field and the center of mass. Connections
are drawn between the centers of mass of connected
place cells. A map is well suited for navigation pur-
poses when it contains many, roughly circular place
fields with connections between regions that are adja-
cent and can be traversed.

Although the agent does not have a metric map
itself, it is able to extract some metric information
from the topological map when it contains some addi-
tional information like orientation of the connections.
Examples of the application of such algorithms are the
spring force model (Hafner, 2000a) or the relaxation
algorithm (Duckett, Marsland, & Shapiro, 2002). These
algorithms assign each place cell to a position on a
two-dimensional plane and use iterative methods to
optimize the spatial layout of the cells.

In Figure 5 left, the average activation of the win-
ner place cell for each grid position is shown for
10,000 steps of the agent exploring the environment.
Here, the place cell activation a = tanh(vw) is calculated
purely from the visual input v and the neural weights w
without the context (previous positions of the agent)
being taken into account. The average winner activation
converges to a value of about 0.7 in the given environ-
ment with optimized free parameters for the learning
algorithm. Figure 5 right shows the development of the
place fields in terms of the roundedness factor.

4.2 Optimizing Learning Parameters with 
Evolution Strategies

The learning strategy described in Section 4.1 has
been optimized using Evolution Strategies (ES) to
adapt the parameters p of the learning algorithm:

p = [η1, α, η2, δ, β1, β2].

The fitness function f = f1 · f2 consists of the product
of a measure f1 for the regions (the roundedness of the
place fields), and a measure f2 for the connections
(between adjacent place fields), which is a mixture of
positive fitness for adjacent place fields whose place
cells are connected and negative fitness for connected
place cells whose place fields are not adjacent. Alter-
native fitness functions could be used such as the cor-
relation between metric and graph distance for all
connections.

The evolution ran on the same randomly gener-
ated path through the environment for each individual
in a generation. The number of place cells was chosen
to be 50 and the evaluation ran for 3000 steps for each
individual. One generation contained 12 individuals,
the evolution strategy (Rechenberg, 1973) used rou-
lette wheel selection with 1-elitism, real valued cod-
ing and an adaptive mutation rate.

The evolved learning parameters of the cognitive
map in Figure 4 right are η1 = 0.045, α = 0.62, η2 = 0.5,
δ = 0.998, β1 = 0, β2 = 0.

Figure 5 Left: Average activation of the winner neuron for each grid position over time during the exploration and
learning phase for one agent. Right: Average roundedness measure for each place field over time.
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When comparing left and right panels of Figure 4,
the influence of the evolved learning parameters can
be easily seen. Contrary to the intuition about intro-
ducing β1, β2 to avoid the problem of spatial aliasing,
they have been factored out during the evolutionary
process. This is surprising, but might be explained by
the fact that these factors play a role for an existing
map and could be disturbing at the beginning when
only a few connections are present.

4.3 Analyzing the Strategy

The cognitive map learning strategy can be analyzed
both on a structural and on a behavioral level. In
Figure 6, the activation of six different place cells is
shown for each position of the agent within the envi-
ronment after an exploration tour with ES-optimized
parameters. One can clearly see that the place cells
specialize for different regions (bright areas) and build
their own distinct place fields. Please note that the
activities indicated by different levels of brightness
only depend on the position, but not on the previous
position of the agent (a = tanh(vw)). The obstacles
have an effect on the place fields. It would be interest-

ing to compare this effect with the influence of obsta-
cles in the measurement of rat place fields (Muller &
Kubie, 1987).

Another way to analyze the resulting cognitive
map is to observe the behavior of an agent using this
map. It is difficult to make quantitative statements
with just one particular environment. One interesting
effect could be observed, however: Asymmetry. The
success rate of an agent navigating from place A to
place B can be different than when navigating from
place B to place A. The reason is the higher impor-
tance of correct connections to the goal place than to
the starting place.

5 Discussion and Perspectives: 
Integrating the Proposed Model 
into the aMouse Architecture

5.1 Mobile Robot Experiments

The cognitive map learning strategy has already been
successfully applied to the mobile robot Samurai
which explored an unmodified office room and created

Figure 6  Activation of six different place cells after an exploration tour in the virtual environment. The black circles rep-
resent the obstacles. The activation is indicated by the brightness where white means a high activation of this cell for a
given place and black a low one.
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a cognitive map of place cells (Hafner, 2000b). The
sensory modalities of the robot are similar to those in
the simulation presented in the previous chapter. The
robot is equipped with a magnetic compass and an
omnidirectional camera similar to the one of aMouse
in Figure 1, built from a camera pointing towards a
convex mirror. The grayscale camera image is trans-
formed into a panoramic view by a polar transform,
vertically averaged and normalized. Results were pre-
sented in Hafner (2000b) and show the different maps
corresponding to different exploration tours within an
office room. The parameters for these experiments had
been hand-coded and not yet optimized using evolu-
tionary algorithms.

Since we are modeling the navigation skills of
mice, inspired by their behavior and by findings of
place cells in their hippocampus, the mobile robot
should share some of the sensory–motor properties of
a real mouse. This is partly true in the aMouse robot
which is equipped with both visual and tactile sensors
(whiskers). The cognitive map model presented in this
paper has yet to be implemented on the aMouse robot.
The following section outlines the challenges of
extending the cognitive map model to sensory modali-
ties other than vision.

5.2 Combining Visual and Tactile Information 
in Cognitive Maps

As vision is just one sensory modality available to rats
when they are navigating (Save, Nerad, & Poucet,
2000), it would be advantageous to also supply the
robot with additional sensory modalities, e.g., whisk-
ers. The whiskers can serve as an alternative source of
information when vision is temporarily not available,
or in addition to improve localization.

Different sensory modalities can be combined in a
cognitive map model. Touretzky and Redish (1996)
designed a place cell activation model, which consists
of the product A = F1

… F6 of six Gaussians which
represent different information cues. If one of the cues
for the place cell activity becomes temporarily una-
vailable, e.g. when the light has been switched off, the
corresponding term drops out of the equation. This
was realized by including the width of the Gaussian
into the term Fi = exp(–xi / σ2), which then became
close to one.

The problem with integrating the different modal-
ities in the same level into the cognitive map model is

partly related to their different information structure.
Visual cues are long-distance cues, whereas tactile
cues can only be gathered in the direct vicinity of an
object.

Strösslin, Krebser, Arleo, and Gerstner (2002) pro-
pose a model to combine visual and tactile informa-
tion in a spatial learning task using gating networks.
Their work is inspired by cells in the superior collicu-
lus and has already been implemented on a Khepera
robot with a grayscale camera and infrared distance
sensors.

The cognitive map model presented in Section 4.1
will be extended to include tactile information from
whiskers as they are used by rats for navigation. For
this purpose, an artificial mouse robot, aMouse, has
been designed and tested in different setups. It will
serve as an ideal platform for the future cognitive map
navigation experiments that will include both visual
and whisker information.

6 Conclusion

We have presented a cognitive map model that can be
used to create a spatial internal representation for
autonomous agents during exploration tours and that
has been tested both in simulation and on a mobile
robot. The model is inspired by place cells in the hip-
pocampus of rats, and reproduces some of the rat
place cell properties, such as the shape and size of
place fields. It lies on a high level of abstraction, rep-
resenting the place cells as nodes of a topological
graph. This work was originally inspired by the cogni-
tive map algorithm by Schölkopf and Mallot (1995),
but extends the restriction to mazes to a realistic open
environment where arbitrary movements are possible.
The algorithm results in sparse topological maps that
can easily extended with metric information. Allo-
thetic (vision) and idiothetic (movement) information
is combined within the model (Arleo & Rondi-Reig,
2004).

Interesting results are the formation of place
fields similar to those observed in rats, and the behav-
ioral experiments. One problem which can be seen in
Figure 4 is that of multiple place fields. Here, one
place cell fires at two spatially separated regions
within the environment. Being unaware of this can
result in strange behavior. We know, however, that
rats have to cope with the same problem. Evidence for
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Hafner Cognitive Maps in Rats and Robots 95

multiple place fields have also been found in rat
experiments.

The experiments on cognitive maps all rely on
visual information and compass information so far.
The next step is to include the tactile sensors (whisk-
ers) into the model. The aMouse robot with omnidi-
rectional vision and two active whisker arrays is an
ideal experimental platform for integrating the two
sensory modalities in the way shown above.
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