
1  Introduction

In this article, we investigate an interesting aspect of
animal behavior, the visual homing strategies of
insects. We use a biomimetic approach, called synthetic
modeling, combined with mechanisms of adaptation
and learning. Such an approach allows us both to
transfer biological knowledge to robot technology and
to exploit robots to gain insights into biological mech-
anisms. Visual homing is a navigation strategy usually
grouped under the term “guidance” (Trullier, Wiener,
Berthoz, & Meyer, 1997): If the goal is not marked by
a visible beacon, the goal direction has to be inferred
from visual cues of the surrounding scene. Not only
insects use guidance as a means of orientation and
navigation, but also rodents, as inferred from Morris’
water maze experiment (Morris, 1981). Although it is
a local navigation strategy, guidance can be used as a
building block for more advanced global navigation

strategies like topological maps of the environment
(Franz, Schölkopf, Mallott, & Bülthoff, 1998b).

A particularly interesting example for the naviga-
tion behavior of insects is the desert ant Cataglyphis.
This animal is an amazing navigator; despite its tiny
brain it is able to leave the nest for long distances (up
to 200 m) and return to its inconspicuous nest entry.
Several theories about its navigation capabilities, at
different levels on the navigation hierarchy, have been
proposed, ranging from path integration using a polar-
ized light compass (Wehner, 2001; Lambrinos et al.,
1997) to visual homing (Collett, 1992) to random
search (Müller & Wehner, 1994). The snapshot model
(Cartwright & Collett, 1983) explains a possible visual
homing strategy, which fits with experimental data of
searching behavior in honey bees. The agent stores an
omnidirectional snapshot of the environment along the
horizon, which is then compared with a snapshot taken
at the current position. The compass information has
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to be used to align the two images according to an
external reference direction. The result is a homing
vector pointing toward the position where the snapshot
was taken. A more parsimonious, parameter-based
model has been introduced by Lambrinos et al.
(Lambrinos, Möller, Labhart, Pfeifer, & Wehner,
2000), called the average landmark vector (ALV)
model. Here, only an average landmark vector has to
be stored at the nest, and it is subtracted from the
current average landmark vector to calculate the homing
vector. In these models, an extraction of the landmarks
from the background is required.

It is still unresolved which part of animal naviga-
tion strategies is innate, and which part can be acquired
through learning and adaptation after birth. Clearly, the
underlying ability to learn is innate. In this work, it is
assumed that ants learn a visual homing strategy by
performing small exploration tours around their nest,
always keeping an updated homing vector by using
path integration. Here, we will investigate an extremely
simple neural structure for learning of visual homing
that is widely independent of any special features of
the environment. As a means of learning, a normalized
version of Hebbian learning is applied, which is
described in Section 2. In Section 3, the experimental
setup of a mobile robot exploring its environment is
introduced. The results are shown in Section 4 and
discussed in Section 5, relating them to existing models
and strategies of visual homing.

2 Neural Structure and Learning

Within the framework of the snapshot hypothesis
(Cartwright & Collett, 1983), successful learning of
visual homing results in the association of two scene
snapshots, one taken at the nest, and one at the current
position of the agent, with a home vector pointing from
the current to the nest position. To be able to perform
learning, training sets consisting of these three kinds
of information pieces have to be created. Ants could
accomplish this by performing small exploration
tours, always maintaining the home vector by using
path integration (Collett & Collett, 2000).

It has been shown that learning of visual homing
is in principle possible using a layered neural network
structure and backpropagation or delta learning as the
learning rule in a self-supervised manner (Hafner &
Möller, 2001). It turns out that the learned homing

principle when implementing a multi-layer-perceptron
(MLP) with up to two hidden layers was functionally
the same as when implementing an MLP with just one
input layer, consisting of the two snapshots, and one
output layer, consisting of the x and y value of the
desired homing vector α.

To simplify further the learning, as well as to
approach the biological originals, a Hebbian learning
rule (Hebb, 1949) is introduced to adapt the weights.
The neural structure has been kept as simple as possi-
ble, according to the given information (see Figure 1).
The intensity values of the snapshot taken at the home
position are aligned with respect to an external refer-
ence direction and stored. The current snapshot, also
being aligned to this direction, is simply subtracted
from the home snapshot. Aligning is performed by
rotating the current snapshot in a way that it is oriented
toward the same direction as is the home snapshot.
We chose the number of virtual ommatidia to be 90 since
a viewing angle of 4° of one ommatidium is biologi-
cally plausible (Zollikofer, Wehner, & Fukushi, 1995).
The connections coming from the current snapshot can
be seen as “inhibitory” connections. The resulting
vector n is directly connected to the home vector (split
into its x and y components) via a single layer of
weights as can be seen in Figure 1. These connecting
weight vectors wx and wy adapt online via Hebbian
learning during exploration tours.

Figure 1 Structural diagram of the neural network
model for determining a homing direction from two snap-
shots. Each snapshot has l = 90 ommatidia and is
oriented toward an external reference direction. The
second snapshot is subtracted from the first one, result-
ing in l neurons ni. The weights wi between ni and the
output layer neurons x and y, which represent the com-
ponents of the homing vector α, are adjusted using
Hebbian learning.
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The change ∆wix in the synaptic weights wix can be
noted as ∆wix (t) = ηx(t)ni(t), where η is the learning
rate, and ni(t) and x(t) are the activation of two con-
nected neurons at time t. The same holds for ∆wiy

.

There is strong physiological evidence for
Hebbian learning particularly in the hippocampus, the
area in the brain of vertebrates that seems to play a role
in certain aspects of learning and memory. Long-term
potentiation (LTP) is such an effect (for a review see
Shors & Matzel, 1997).

To avoid the weights growing infinitely, we use
a normalized Hebbian learning rule, in which both
weight vectors wx and wy that connect the input neu-
rons ni with x and y, respectively, are normalized.
Oja (1982) introduced a convenient form of normali-
zation. In a time-discrete learning rule, normalization
is accomplished by

Assuming that the learning rate η is very small,
we can rewrite the equation as a Taylor series of η:

The term O(η2) can thus be ignored and we get

where the second term of Equation 3 can be seen as a
regulatory term. The same holds for wiy:

Instead of directly encoding the two components
of the home vector at the output, another possibility
of encoding the home vector at the output would
be population coding (Georgopoulos, Schwartz, &
Kettner, 1986), which is known to be more stable
against noise. In this article, however, we only examine
direct encoding.

3 Experiments

Several experiments have been performed to explore
learning of a visual homing strategy and to test this stra-
tegy in  navigation tasks. The mobile robot “Samurai”
(see Figure 2) has been used for these experiments.

3.1 Visual Processing

The mobile robot is equipped with an omnidirectional
camera consisting of a USB RoboCAM attached to a
convex mirror (Chahl & Srinivasan, 1997). Only the
intensity values (“gray values”) of this image some
degrees above and below the horizon have been
used. First, this portion of the camera image has been
transformed to its polar mapping and vertically aver-
aged (see Figure 3), resulting in a vector of intensity
values. A low pass filter has been applied to the inten-
sity curve to reduce noise, avoid spatial aliasing, and
increase robustness. The resulting curve has been
shifted by the compass value to get an orientation-
invariant place image. The final information available
to the artificial neural system is a normalized low-
resolution vector (90 virtual ommatidia) of the place
image. In our definition, points in the environment
corresponding to points in the image are called land-
marks. It is therefore possible for a physical object to
consist of several landmarks.
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Figure 2 Mobile robot “Samurai,” equipped with an
omnidirectional camera, a fluxgate magnetic compass,
differential steering, and wheel encoders.

wix(t + 1) = wix(t) + ηx(t)ni(t )√∑
j (wjx(t) + ηx(t)nj (t))2

wix(t + 1, η)

= wix(t + 1, 0) + η
dwix(t + 1, 0)

dη
+ O(η2) (1)

= wix(t) + ηx(t)[ni(t) − x(t)wix(t)] + O(η2) (2)

�wix = ηxni − ηx2wix, (3)

�wiy = ηyni − ηy2wiy (4)
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In previous experiments (not shown here),
additional filters have been applied that take the spatial
derivative of the snapshots into account. They signifi-
cantly improved the homing results for one test
environment. However, we found out that they were
strongly dependent on the specific structure of the
environment, that is, the average spatial frequencies.
Therefore, we use the lowpass-filtered, normalized
one-dimensional image without any further processing.

3.2 Offline Learning Tests

First tests have been performed with off-line learning
using a set of camera images that were taken at grid
positions in an unmodified office room. We recorded
80 omnidirectional images on an 8 × 10 grid with a
total size of 140 × 180 cm. Random pairs of images
have been fed to the artificial neural network together
with the desired output consisting of the vector pointing
from one snapshot position in the room to the other.

Together with all possible orientations of the robot, the
total number of learning samples is (802 − 80) · 90 =
568,800. The results of these tests (see Section 4)
showed that the simple neural structure is indeed
sufficient to learn visual homing with Hebbian learn-
ing and real-world images.

3.3 Mobile Robot Exploration Tours

The next step is the adaptation of the weights during
exploration tours of the mobile robot. The robot is
equipped with an omnidirectional camera, a com-
pass, differential steering, and wheel encoders as its
primary sensors. The compass comprises two fluxgate
magnetic field sensors. As the magnetic field is not
accurate in buildings, the compass values have been
fine-tuned using the camera data. The choice of the
sensors is justified by ants having almost omnidirec-
tional vision (Zollikofer et al., 1995), being able to use
the polarization pattern of the sky as a compass, and
being able to perform path integration (Wehner, 2001).

For the learning task, the robot explores the
environment, performing small translations (ca. 80 cm)
followed by small rotations (ca. 60°). At the beginning
and the end of each translation, an omnidirectional
snapshot was taken, together with a compass measure-
ment of the heading direction α. Note that for these
exploration tours, we did not use a static home posi-
tion but defined the first of each pair of snapshots to be
the home snapshot. The artificial neural network
received the information of the two preprocessed snap-
shots together with α and adjusted the weights using
normalized Hebbian learning as described in Section 2
with exponentially decaying learning rate η. The
exploration environment was an unmodified office
environment; the accessible ground was of convex
shape and flat.

3.4 Robot Homing

After the neural network weights have converged to
stable values while the environment is being explored,
the robot switched from exploration to homing mode.
In this mode, the robot takes a snapshot at an arbitrar-
ily defined home position and is steered to another
position by the researcher. The robot then attempts to
return to the position where the snapshot has been
taken using this snapshot as well as the snapshot taken
continuously at the current position. Data from the
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Figure 3 Top: Original camera image taken with the
omnidirectional camera on the mobile robot. Center:
Polar transform of the original camera image. Only a
certain range below and above the horizon is used.
Bottom: Intensity curve of the column-averaged image,
and its low-pass filtered version.
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wheel encoders are not taken into account during the
homing procedure. The homing vector vh is gained
from the x and y value of the neural network. vh = (x,y) =
(Σiwixni, Σiwiyni). To derive the motor values required
for moving toward the home position, the homing
vector vh is rotated clockwise by 45° (see Figure 4),
and the components are applied to the motors of the
robot’s wheels (Möller, 2000). The x component of
vhrot

is used for the left wheel, the y component for the
right wheel.

4 Experimental Results

4.1 Off-line Learning

First we consider the off-line learning experiments
with the recorded camera images. After fewer than
1,000 steps of Hebbian learning with exponentially
decaying learning rate η (η0 = 0.035, ηt+1 = 0.998ηt),
the weights wx and wy converged to two sine-shaped
curves of different phase shift (see Figure 5). The
learning phase finishes when the total weight change
becomes considerably small. An explanation of why
the weights are converging to this specific form is
given in Section 5.1.

The sorted angle errors of 1,000 randomly chosen
sets of training data, after the weights have converged
using Hebbian learning with the recorded images, can
be seen in Figure 6, averaged over 10 runs. The angle
error is defined as the absolute angle included from the

true homing vector and the homing vector coming
from the neural network output. The average angle
error is smaller than 90° in more than 92% of the train-
ing cases, and smaller than 45° in more than 69% of
the training cases. The diagonal line shows the curve
for random guesses of the homing vector. Assuming
that the errors are equally distributed within the envi-
ronment positions, the result is converging homing
trajectories, since a large percentage of angle errors lie
below 90°. If the angle errors were always lying below
90°, the distance to the goal position would decrease

Figure 4 Transformation of the homing vector vh to
motor commands of the mobile robot. The vector is
rotated clockwise by 45º to vhrot

; the x component of vh rot
is used for the left wheel, the y component for the right
wheel of the mobile robot. Figure 5 The weight values have converged to shifted

sine-shaped curves after 1,000 steps of Hebbian learning
with recorded place images.

Figure 6 Sorted angle error of 1,000 samples after the
weights have converged using Hebbian learning with the
recorded images, averaged over 10 runs. The average
angle error is smaller than 90º in more than 92% of the
test cases; it is smaller than 45º in more than 69% of the
test cases.

vhrot = Rvh

(
cos φ sin φ

−sin φ cos φ

)
vh, with φ = π

4
(5)
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monotonically during the homing task (Franz,
Schölkopf, Mallott, & Bülthoff, 1998a). The home
vector field after the Hebbian learning procedure has
been plotted for two different snapshot positions (5, 1)
and (5, 6) as shown in Figure 7.

In Figure 8 left, the intensity-coded angle errors
for all possible place pairs are shown, averaged over
100 trials with different initial weights. The plot is
symmetric, and one can clearly see that the angle
errors are not equally distributed on all grid positions
but are larger for certain place combinations. There is
also a small area in the lower left part of the room with
high angle errors on average (compare Figure 8 right).

4.2 Learning on the Mobile Robot

The performance in the real world during on-line learn-
ing has been tested both by recording the angle errors
during exploration and by homing tasks. An example of
the internal state of the mobile robot during exploration
and homing is depicted in Figure 9. The neural network
weights have adapted to the same structure as in the
off-line experiments. As will be shown in Section 5.1,
the learned visual homing algorithm is not dependent
on any specific environment but is determined by
intrinsic geometric properties. When each two snap-
shots have been recorded, the angle error between
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Figure 7 Home vector plots for the set of recorded images after Hebbian learning. The plot on the left shows the home
vectors for a snapshot taken at (5, 1); the plot on the right shows the home vectors for a snapshot taken at (5, 6).

Figure 8 Left: Intensity-coded angle errors for all possible place pairs, averaged over 100 trials. Right: Intesity-coded
average angle errors for each place in the room (80 grid positions) paired with all others, averaged over 100 trials.
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the measured compass direction and the vector
produced by the neural network have been recorded
before the two snapshots are used for the Hebbian
learning. The initial learning rate was set to η0 = 0.04
with ηt + 1 = 0.999ηt. One can clearly see in Figure 10
that the average angle error is decreasing during learn-
ing from values corresponding to random guesses of the
homing vector to values below 90°. The average angle
errors over each 20 runs are shown as horizontal
lines. Learning on the mobile robot during exploration
tours needs fewer learning steps than off-line learning
with the recorded images, since only snapshot pairs
with a direct connection (ca. 80 cm) between their posi-
tions are used as input to the neural network.

After exploration of the environment, the homing
tasks are performed by driving the mobile robot man-
ually to different positions within the room, allowing
it to take a home snapshot, steering it away from this
position by a distance of approximately 1–2 m and
letting it perform homing as described in Section 3.4.
The mobile robot reaches the goal in most of the
combinations of goal and starting position, often
approaching the goal position in a curve rather than

a straight line. The observed homing behavior is
comparable with the results obtained with the set of
recorded images (See Figures 7 and 8) taken in the
same room. Note that the general requirements for
visual homing are that a certain portion of the landmarks
is visible in both snapshots.

5 Discussion

5.1 Explanations for Learning and Homing

Having demonstrated learning of a visual homing
strategy using Hebbian learning in a very simple
neural network structure, we give some explanation of
why this strategy is successful. In Figure 11, a
schematic drawing of two snapshot positions with the
corresponding one-dimensional omnidirectional snap-
shots is shown. Applying the isotropic as well as the
equal distance assumption as introduced by Franz
et al. (Franz et al., 1998a), the orientation of the transla-
tion vector d between the two snapshot positions can
be determined from the snapshots.
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Figure 9 Internal and sensory state of the mobile robot
during exploration (after the weights have converged
to stable values). Top left: The current values of the
weights. Bottom left: The intensity values of the two snap-
shots. Top right: The difference between those two snap-
shots. Bottom right: The compass direction α as obtained
from the magnetic compass is displayed (in polar
coordinates).

Figure 10 Angle error over time during the exploration
and learning phase on the mobile robot. The angle error
is the absolute angle included between the direction sug-
gested by the neural network output (before adapting the
weights with these specific snapshots) and the measured
direction the mobile robot has taken between the two
snapshot positions. The average angle errors over each
20 runs are shown as horizontal lines.
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Three rules can be generated from the intrinsic
properties of the environment:

1. If both omnidirectional views are rotated by an
angle α, the home vector is rotated by −α.

2. If the two omnidirectional views are exchanged
with each other, the home vector is rotated by π.

3. It follows: If the omnidirectional views are both
rotated by π and exchanged, the home vector stays
the same.

It has been shown by Hafner and Möller (2001)
that, given these properties, the neural network
weights need to have a sinusoidal structure, and that
one snapshot has to be subtracted from the other. Here,
the subtraction is already inherited in the neural net-
work structure by using “excitatory” synapses from
the home snapshot and “inhibitory” synapses from the
other snapshot. Two open questions remain:

1. Why do the weights adapt to this structure using
Hebbian learning?

2. Why is it possible to home with it?

The first question can be answered by looking
at some properties of the subtracted snapshots. First,
we consider a translatory movement with constant
velocity v as depicted in Figure 12. A translation p of
the mobile robot is equivalent to a translation −p of
the environment. To simplify the calculation, the

coordinate system is defined in a way that py = 0 and
px = ||p||. We examine the change in the angle βi for
each landmark lmi during the movement p. Please
refer to the Appendix for the intermediate steps.

The change in βi is proportional to sin βi, v, and 
where ki is the distance to the landmark lmi, and v is a
constant velocity. The ki are assumed to be constant on
average over time. Since the snapshots are normalized
and lowpass filtered, a small change in position on the
sensor ring results in a small change in intensity at this
position. The difference vector n of the two snapshots
in the neural network corresponds to this change in
intensity. Consequently, over several runs with differ-
ent landmark configurations, we have a sine-shaped
inhomogeneous distribution ρm of intensity on the dif-
ference nj of the two one-dimensional omnidirectional
snapshots (see Figure 13). ρm has a positive peak at
position m with sin βm = 1 and a negative peak at
(m + ) mod l, where l is the number of neurons per
snapshot. This distribution leads to an enhancement of
the weights connecting nj (j around m) with x and y
during the Hebbian learning procedure.

Considering the rotation of the coordinate system
by an angle α, the change in the synaptic weights is

l
2

1
ki
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Figure 11 Schematic drawing of two snapshot positions
with the corresponding one-dimensional omnidirectional
snapshots. Applying the isotropic as well as the equal dis-
tance assumption as introduced by Franz et al. (Franz
et al., 1998a), the orientation of the translation vector d
between the two snapshot positions can be determined
from the snapshots.

Figure 12 Schematic drawing of the visual field of the
mobile robot during a translation −p, which is equivalent
to the surrounding landmarks (lm) translating with p. The
change in the angle βi is dependent on sin βi, v, and ki.

dβi

dt
= − sin βi

ki

v (6)
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∆wkx = ηnkx(α) = ηnk cos α (before normalization)
with . The same holds for movements in the
y-direction and any combinations, transforming the
weight vectors wx and wy to sine-shaped curves with a
phase shift of π

2
.

The second question results in a comparison with
an existing model: Homing is possible, since the
learned model is directly comparable with the ALV
model (Lambrinos et al., 2000), which allows for
visual homing. The ALV model calculates the homing
vector h by subtracting the AL vector at the target
position from the AL vector at the current position:

where ALVtar = Σ n
i=1 lan i

tar and ALVcur = Σn
i=1 lan i

cur with
lan i

cur and lani
tar being the landmark vectors.

The homing vector vh of the neural network is
calculated as (let l be the number of neurons per snap-
shot and with an index i ∈ {0, . . . , l − 1}):

Using lowpass-filtered intensity values for the
snapshots without applying any additional filtering or
landmark extraction, ALV1 and ALV2 represent the
vector pointing toward the center of mass of the sensor
ring rather than an average landmark vector.

5.2 Comparison with Existing Models

To the best of my knowledge, this article describes the
first model of learning and adaptation of visual hom-
ing on a mobile robot using the snapshot hypothesis.
As has been shown, the homing model resulting from
the learning procedure is similar to the ALV model
(Lambrinos et al., 2000). The main difference lies in
the fact that we are not applying any landmark extrac-
tion as is necessary in the ALV model. Our learned
model lies somewhere between a template model, such
as the snapshot model (Cartwright and Collett, 1983),
and a parameter model, such as the ALV model. The
question of whether insects are using a template model
for visual homing, like the snapshot model, or a para-
meter model, like the ALV model, or a mixture of both
is still unresolved (Möller, 2001).

Lambrinos et al. (2000) have implemented a
version of the snapshot model on the mobile robot
“Sahabot” and have successfully tested it using artifi-
cial landmarks. The ALV model has been imple-
mented in an analog version (Möller, 2000), being
tested with black landmarks on a white background.

Another method that works with unsegmented
grey value images is Franz et al.’s (1988a) homing
model with parameterized displacement fields. This
model is computationally more expensive, but it has
the advantage that the views do not have to be aligned
to a global compass orientation.

5.3 Future Work

The learned visual homing algorithm represents a
general homing strategy that is independent of a specific
environment as has been shown in theory and con-
firmed with experimental results. Future experiments
have to be performed to investigate whether there are
any minimal requirements for these environments, for
example, whether outdoor environments need a
special kind of image filtering.

Another area that needs further investigation
is environments with obstacles. The ALV model
comprises an emergent obstacle avoidance due to the
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Figure 13 Difference vector n = s1 − s2 for a movement
in the x-direction using the recorded images, averaged
over 10 (dotted line), 50 (dashed line), and 200 (solid line)
randomly chosen image pairs.

h = ALVcur − ALVtar,

vh = (x, y)

=
(

l−1∑
i=0

wix ni,

l−1∑
i=0

wiy ni

)

= C

(
l−1∑
i=0

cos(gi)ni,

l−1∑
i=0

sin(gi)ni

)

= CALVn

= C(ALVs1 − ALVs2)

k = αl

2π

gi = 2πi
l
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occlusion of remote landmarks by near landmarks.
This behavior was also achieved by learned visual
homing strategies in simulations (Hafner and Möller,
2001) but needs additional examination in real-world
situations.

5.4 Conclusions

It has been shown both theoretically and with mobile
robot experiments that learning of a visual homing
strategy is possible using simple neural network struc-
tures together with Hebbian learning. The learning
rule leads to an adaptation of the neural network
weights during online exploration tours, resulting
in a visual homing model similar to the ALV model,
consequently strengthening the ALV hypothesis.
In contrast to previous implementation of visual
homing, no object recognition or landmark segmenta-
tion is required. The resulting homing strategy is
widely independent of any special features of the
environment.

It is suggested that only part of the visual homing
abilities in animals is innate, for example, some basic
neural structure. The navigation ability itself is
acquired after birth through adaptation to the specific
morphological properties of each animal. It has been
shown in this article that such an adaptation is possi-
ble using Hebbian learning during small exploration
tours. The neural connections can also be adapted to
account for a change in the morphology as can happen
during growth or as the result of an injury.
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Appendix

We examine the change in the angle βi for each land-
mark lmi during the movement p with py = 0 and px =
||p|| (see Figure 12):

The change in βi is proportional to sin βi, v and
where ki is the distance to the landmark lmi.

tan βi = yi

xi

⇒ βi = arctan

(
yi

xi

)
(A1)

dβi

dt
= dβi

dx

dx

dt
+ dβi

dy

dx

dt
(A2)

= dβi

dx
v (A3)

= 1

1 + (
yi

xi
)2

(
− yi

x2
i

)
v (A4)

= −yi

x2
i + y2

i v
(A5)

= −yi

k2
i

v (A6)

= − sinβi

ki

v (A7)

1
ki
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