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Abstract—This work investigates the role of predictive models
in the implementation of basic cognitive skills in robots, such
as the capability to distinguish between self-generated actions
and those generated by other individuals and the capability to
maintain an enhanced internal visual representation of the world,
where objects covered by the robot’s own body in the original
image may be visible in the enhanced one.

A developmental approach is adopted for this purpose. In par-
ticular, a humanoid robot is learning, through a self-exploration
behaviour, the sensory consequences (in the visual domain) of self-
generated movements. The generated sensorimotor experience is
used as training data for a deep convolutional neural network
that maps proprioceptive and motor data (e.g. initial arm
joint positions and applied motor commands) onto the visual
consequences of these actions.

This forward model is then used in two experiments. First,
for generating visual predictions of self-generated movements,
which are compared to actual visual perceptions and then used
to compute a prediction error. This error is shown to be higher
when there is an external subject performing actions, compared
to situations where the robot is observing only itself. This
supports the idea that prediction errors may serve as a cue for
distinguishing between self and other, a fundamental prerequisite
for the sense of agency.

Secondly, we show how predictions can be used to attenu-
ate self-generated movements, and thus create enhanced visual
perceptions, where the sight of objects - originally occluded by
the robot body - is still maintained. This may represent an
important tool both for cognitive development in robots and for
the understanding of the sense of object permanence in humans.

I. INTRODUCTION

Human perception is partially guided through a predictive
process [1], [2]. The way we perceive the world seems to be
strongly shaped by what our brain expects to perceive. These
expectations would be made up from past experience of our
bodily interaction with the world. Growing evidence suggests
that similar processes shape also the way we perceive ourselves
[3]–[7]. How do we recognise our own body and our own
movements? Indeed, this is a very intriguing skill that we, as
humans, possess and that allows us to naturally interact with
other people and with our surroundings.

Researchers usually identify two main phenomena char-
acterising self-recognition in humans [8]: a sense of body
ownership and a sense of agency. Sense of body ownership
is intended as the subjective experience where we feel that we

are observing our own body1. Sense of agency is intended,
instead, as the subjective experience where we feel in control
of our own actions.

One of the most accepted proposals explaining the func-
tioning of these phenomena relies on the existence of a self-
monitoring mechanism in our brain [9]. Such a monitoring
system would constantly anticipate the sensory consequences
of our own actions. The discrepancy between predicted and
observed sensory outcomes of bodily actions would thus serve
as a cue for the sense of agency and body ownership. The
original proposal [9] has been further developed and also
debated. An interesting alternative proposal explaining sense
of agency supports also the existence of a self-monitoring
mechanism in our brain, but shapes it around a predictive
coding framework [4].

Recently, interest in these phenomena has been raising
also in the developmental robotics community [10]. Here,
scientists are investigating whether and how self-awareness -
and, in general, motor and higher cognitive skills - can be
implemented into artificial agents adopting a developmental
approach. Such an approach would consist in implementing
into the artificial agent those fundamental behavioural and
computational components that would allow it to go through
an autonomous onthogenetic process, where the experienced
embodied interaction with the external environment is used to
form up knowledge about the body and its capabilities.

Although we are still far from having self-aware robots,
many interesting studies have been conducted in the last
years, which provide insights in the understanding and in
the implementation of such a skill in artificial systems. For
instance, predictive models - trained with sensorimotor data
generated by the robot itself - have been shown to allow the
implementation of basic cognitive skills (for a review, please
refer to [11] and [12]).

In previous works, we investigated such models in humanoid
robots, implementing predictive capabilities in different sen-
sory modalities, e.g. proprioceptive, visual [13] and auditory
[14]. In [13], for instance, we presented an implementation of a
self-monitoring mechanism that allowed a simulated humanoid

1Observing, here, is meant more generally as perceiving, e.g. visually or
through our tactile sense.



robot to anticipate the sensory consequences of self-generated
movements. We demonstrated that prediction errors in the
visual modality can be used as a cue for distinguishing between
self-generated actions and actions generated by other agents.
Moreover, we investigated whether the same self-monitoring
mechanism can be behind the development of a sense of
object permanence. Sense of object permanence is the feeling
that objects continue to exist even if they cannot be seen,
heard, or otherwise observed [15]. Several studies suggest
that object constancy perception relies on predictive processes
implemented by our brains [16], [17]. More importantly, this
phenomenon is considered crucial in human cognitive develop-
ment. In [13], we showed that a humanoid robot can maintain a
mental representation of an occluded stationary object, through
the same predictive and sensory attenuation processes that are
implementing the self-monitoring mechanism described above.

However, in [13], the hypotheses were only confirmed on
data from a simulated robot with two degrees of freedom. Fur-
thermore, the applied k-NN algorithm operated on extracted
hard-coded features instead of the higher-dimensional original
images. Here, we extend our previous work by confirming the
hypotheses on real-world visual and real-robot sensorimotor
data obtained from of a robot with four degrees of freedom. For
that, we replace the limited k-NN forward model with a more
sophisticated one not requiring predefined feature extraction -
implemented as a deep convolutional neural network capable
of image generation.

The rest of the paper is structured as follows. In section
II, we describe the methodology, the robotic platform and
the models adopted in this work. Section III illustrates the
experimental setup. In section IV, we present the results of
our study, which are finally discussed in section V.

II. METHODOLOGY

The aim of this work is to enable the robot to learn to predict
sensory consequences of its own motor actions. For that, a
mapping between current sensory state plus intended motor
actions and resulting sensory state has to be learned. This
notion resembles that of a forward model, depicted in figure
1, an internal model that can predict the sensory consequences
of an action [18]. In this work though, other than in the usual
case, the modalities of the current sensory state (t) and the
predicted sensory state (t+1) differ.

Forward
Model

Sensory state (t)
Predicted sensory state (t+1)

Motor command(t)

Fig. 1. Schematic representation of a forward model

Our model takes as inputs the current robot joint config-
uration, i.e. the current sensory state, denoted by S(t), and
the intended motor command, denoted by M(t). It outputs
the predicted image of the robot’s camera, i.e. the future
visual state, denoted by Img∗(t + 1). We trained the model
with sensorimotor and visual data generated executing a self-
exploration behaviour (see section III). Once the mapping is

learned with the forward model, it can be used for imple-
menting self-monitoring mechanisms. Sensory states, in this
case visual ones, can be anticipated when feeding the model
with the current sensorimotor state and the intended motor
command. We use this capability in two experiments. First, the
predicted visual state Img∗(t + 1) is compared to the actual
visual input Img(t+1), resulting in a prediction error, that is
then expected to serve as a cue for the unexpectedness of an
event, which in turn enables the robot to distinguish between
own actions and actions of external agents. This capability, as
discussed in the introduction of this paper, is thought to be
fundamental for the development of a sense of agency. The
second experiment aims at supporting speculating about the
development of a sense of object permanence. The training
images are preprocessed so that they, and consequently also the
predictions of the model, represent a segmentation of the visual
field into the two categories robot body part and background.
In the experiment, this segmentation is then used to replace the
parts in the image input where robot body parts occlude the
robot’s sight with previously seen image data. This generates
an enhanced internal visual representation of the world, where
objects hidden by the robot’s own body in the original image
may be visible in the enhanced one.

The approach in this work differs from our previous work
[13] in that here, we use a real robot instead of a simulation
environment, hence deal with real (noisy) robot movements
and images from its camera. Instead of applying a 20x20
grid on the images, they are slightly downsized to 128x128
pixels. Furthermore, the model learns to predict the actual
visual outcome instead of the number of pixels that change
per grid area. In order to achieve this, a convolutional neural
network was used as a model instead of the simpler nearest-
neighbor approach. For details, see the following subsections.

A. Robotic Platform

We used a SoftBank Robotics NAO humanoid robot. It
has 25 degrees of freedom, 10 of which are arm joints. We
used 4 (instead of 2 in [13]) of the 5 joints of the left arm,
namely shoulder roll, shoulder pitch, elbow roll, and elbow
yaw. We reckoned the 5th arm joint, wrist yaw, would not have
significant visual impact. We recorded the visual input from
the top (forehead) camera of the robot with an image size of
320x240 pixels. In order to control the robot movements and
to retrieve its camera images, we used the python API of the
NAOqi SDK v2.1.4 2.

B. Model Architecture

In order to learn the mapping of the forward model

(S(t),M(t)) −→ Img(t+ 1)

we use a deep convolutional neural network (CNN). In
many cases, these models are used for image classification,
for example in [19], [20] or semantic segmentation [21], where
the image data is (part of) the model input. Other use cases,

2http://doc.aldebaran.com/2-1/dev/python/



Fig. 2. Schematic representation of the convolutional neural network model architecture. S(t): sensory state at time t. M(t): Motor command sent at time
t. D: Dense, i.e. fully connected, neural network layer. C: Convolutional neural network layer (kernel size: 3, stride: 1, ‘same’ padding). TC: Transposed
Convolutional neural network layer (kernel size: 4, stride: 2, ‘same’ padding). Every layer except the last (output) one is followed by a ReLU activation unit
(not shown).

conceptually related to this work, are image generation [22].
Even more closely related are works that aim at learning an
implicit low-dimensional representation of image data, which
can then also be used to generate new images [23]. Most of
these approaches, however, operate in an unsupervised setting,
i.e. only the image data itself is available for training, since it
is often hard, expensive or infeasible to acquire large amounts
of labelled image data. In our supervised setting on the other
hand, the robot’s self-exploration behaviour described in sec-
tion III generates image data labelled with joint configuration
data at no extra cost. Therefore, we build a CNN inspired by
and very similar to the one in [24]. The model architecture is
depicted in figure 2. The 8-dimensional input (4 dimensions
each for S(t) and M(t)) is followed by 5 fully connected
layers comprising 512, 512, 1024, 1024, and finally 16,384
nodes. The final fully connected layer is reshaped to 8x8x256.
Subsequently, we upsample the vector further by 3 transpose
convolution layers (kernel size: 4, stride: 2, ‘same’ padding)
each followed by a standard convolution layer (kernel size:
3, stride: 1, ‘same’ padding), step by step decreasing the
number of channels from 256 to 48 while increasing the
image dimension from 8x8 to 64x64. Finally, a last transpose
convolution layer (kernel size: 4, stride: 2, ‘same’ padding)
is added that outputs the resulting 128x128 one channel (i.e.
grayscale) image representing Img(t+1). Every layer except
the last (output) one is followed by a ReLU activation unit.

III. EXPERIMENT

As described in section II, we implemented a self-
exploration behaviour into the robot to generate the sensorimo-
tor data needed for training the model. For simplicity, random
motor babbling has been used as an exploration strategy, where
a number of random commands are sent to the four joints. The
commands were drawn uniformly from a restricted joint space
in order to increase the relative time during training at which
the robot’s arm is actually visible. To further improve visibility
of the robot arm, the NAO’s head was turned to the left by
0.3 radians (head yaw).

Two different models were trained for the two different
experiments. For both models, random motor babbling was
implemented in front of a monochrome blue background,
while 30 frames per second were sampled from the NAO’s
front camera. With each frame, the current joint configuration
was recorded as well. A training sample then consisted of
the joint configuration associated with the previous frame (4-
dimensional) and the difference between current and previous
joint configuration (4-dimensional) as inputs, plus the current
recorded image as output.

For the sense of agency model, 500 motor commands were
sent, resulting in 23,945 training samples. The recorded image
frames were greyscaled and resized to 128x128 pixels. No
further preprocessing was applied.

For the object permanence model, 200 motor commands
were sent, resulting in 9,446 training samples. The recorded
image frames were greyscaled and resized to 128x128 pixels.
In order to segment the images into background and robot arm,
further preprocessing was applied. Gaussian blur was applied
to each image. The absolute difference of this result and a pre-
recorded image showing only the background was taken and
thresholded, resulting in strictly black and white segmented
images, i.e. each pixel was either black (representing back-
ground) or white (representing the robot arm).

Each model was trained with shuffled training samples and
a batch size of 128 for 100 epochs using the Adam optimizer
[25].

A. Sense of Agency

For the sense of agency experiment, 20 trials were recorded.
In each trial, one random motor command, drawn from the
same uniform distribution as during training, was executed
under two conditions. In the first condition, at most the robot
arm movement was present in the visual field of the robot.
In the second condition, additional external movement was
present in the scene, for example the movement of a human
hand. In both cases, the experiment was executed with a
slightly tilted robot head and in front of the same blue screen



as in the training session, and the resulting images were
recorded from the robot’s forehead camera again at 30 frames
per second. Note however, that the data recorded for the
experiment was not part of the data used to train the predictive
model.

Each recorded frame was then greyscaled and resized to
128x128 pixels to match the format of the model output. The
result was then compared to the prediction of the trained model
given the input angles associated with the recorded frame,
yielding a prediction error (simply the absolute difference
between image and prediction) for each pixel. Taking the mean
error over all pixels gives a prediction error for each frame.
The two conditions are then compared in terms of this sample
of prediction errors, where the sample size equals the number
of frames in the trial.

Figure 3 shows the four steps. First, the originally recorded
image. Second, the greyscaled images. Third, the prediction
of the model, and finally the error map, showing the absolute
difference between the greyscaled image and the prediction,
thresholded, i.e. only pixels with a difference greater than
a thresholding value are shown. The expectation is that the
prediction error distributions under the two conditions differ
significantly, with the prediction error being higher on average
under the second condition. This would support the claim that
the prediction error may be used as a cue for sense of agency,
where a higher prediction error signifies a higher amount of
“surprise” and therefore a higher probability of the presence
of external agent activity.

B. Object Permanence

For the object permanence experiment, 20 trials were
recorded in front of a blue screen, with a round object, for
example a red ball, present in the robot’s visual field at
different locations. In each trial, one random motor command,
drawn from the same uniform distribution as in the training
part, was executed. The commands were selected such that the
robot arm was visible to the robot and that it would occlude the
robot’s sight of the round object in part of the image sequence.
A subsequence was then chosen around this part in order to
ensure relevance of the trial for the task of maintaining object
permanence.

For each frame, the joint configuration associated with it
was fed as input to the forward model to generate a prediction
of where in the input image the robot arm would occlude the
robot’s sight. The prediction (128x128 pixels) is then resized
to 320x240 pixels in order to match the shape of the images
recorded by the camera. Recall that the forward model used
for the object permanence experiment was trained with black
and white segmentation images where black pixels represented
background, while white pixels represented a robot body part,
but the predictions are float-valued. Therefore, the predictions
were normalized to the usual range of greyscale images (0 -
255) and then thresholded in order to get a true mask image
that assigns to each pixel a true or false value representing
whether the model predicts that this pixel would be occluded
by the NAO’s arm or not.

Fig. 3. Example sequence showing one partial trial of the sense of agency
experiment under two conditions. First row: original image resized to 128x128
pixels. Second row: Greyscaled original image. Third row: Prediction of
the forward model. Fourth row: Error map showing thresholded absolute
difference between prediction and greyscaled image.

Using this mask, two approaches to obtain an enhanced
image serving as an enhanced internal representation of the
visual input for the robot were tested. Following the first
approach, the pixels predicted to be occluded by the robot hand
were simply replaced by the pixels from a pre-recorded static
image showing the experimental setup without any robot body
parts, i.e. the blue background with the additional round object.
Following the more complex second approach, the pixels
predicted to be occluded by the robot hand were replaced by
the pixels from a dynamically maintained background image
that was updated in each time step at the locations where we
could be sure, according to the prediction, that the robot’s view
was not occluded. The second approach is conceptually closer
to what we suggest is happening in reality and may prove
useful in future experiments, where the background might
change over time within one trial, for example when the object
to be recognized is moving.

In order to quantify the effectiveness of the approaches,
the Hough circle detection algorithm provided by the opencv-
python library (v3.4.0.12) was applied to both the original and
the enhanced image in every time step to determine whether
a round object is visible or not. For an effective technique,
the expectation is that the circle detection rate is significantly
higher for the enhanced images.

Figure 4 shows the four steps. First, the original image.
Second, the prediction by the forward model. Third, the nor-
malized and thresholded mask. In the fourth row, the enhanced



image obtained when using the first approach and finally the
enhanced image obtained when using the second approach.
The reason for resizing the prediction to 320x240 pixels rather
than resizing the recorded image to 128x128 pixels is that the
circle detection algorithm works much better when the original
aspect ratio is preserved.

Fig. 4. Example sequence showing one partial trial of the object permanence
experiment (showing every second frame). First row: original image. Second
row: Prediction of the forward model. Third row: Normalized and thresholded
prediction (mask). Fourth row: Enhanced image (first approach). Fifth row:
Enhanced image (second approach). A green circle indicates that the red ball
was detected.

IV. RESULTS

A. Sense of Agency

Table I shows the results of the 20 sense of agency trials.
For each condition, the mean and the standard deviation of the
frame prediction error are shown. Frame prediction error refers
to the sample vector of prediction errors, where each vector
entry corresponds to one frame of the sequence, and its value
is the average over all pixel prediction errors in that frame.
In all 20 trials, the mean frame prediction error is greater
under the second condition where external agent activity was
present in the robot’s visual field. In 18 out of 20 trials, the
frame prediction error distribution differs significantly, with a
p-value less than 0.05, supporting the claim that it can serve
as a cue for a sense of agency. We suspect that the reason why
the p-value is larger than 0.05 in two of the trials (trial 1 and
trial 18) is that in these trials, the robot arm was very close
to the robot’s camera, thereby obstructing the robot’s view of
the external activity. Indeed, the external objects in both these
trials were visible in less than 50% of the frames. Selecting the
subsequences where external activity was present and running
the same sense of agency experiment on the subsequences
results in p-values of 0.024 < 0.05 and 5.08e-4 < 0.05 for
trial 1 and trial 18, respectively.

B. Object Permanence

Table II shows the aggregated results of the object perma-
nence experiment with the first and second version of the
algorithm. 20 trials were run as described in section III. In
every trial and for both approaches, the ball detection rate was

TABLE I
SENSE OF AGENCY RESULTS

Trial p-value Condition 1 Condition 2
MEAN STD MEAN STD

1 4.19e-01 19.5 6.58 20.85 7.76
2 2.83e-03 18.22 6.74 21.87 7.9
3 1.89e-12 11.55 2.15 31.7 11.99
4 1.47e-16 11.09 0.75 22.34 8.09
5 4.54e-18 13.56 2.28 25.84 7.46
6 1.47e-06 16.58 2.95 24.32 7.62
7 3.32e-06 17.45 6.39 28.35 11.99
8 4.24e-13 11.53 1.85 20.89 8.71
9 1.48e-10 16.21 6.61 24.64 3.0
10 1.14e-25 13.56 7.85 31.61 9.05
11 2.57e-14 17.19 6.37 27.41 7.32
12 5.99e-11 20.75 5.26 29.78 5.83
13 1.16e-15 10.51 0.4 26.59 13.47
14 6.65e-23 13.83 5.03 30.28 6.81
15 4.92e-11 11.36 1.39 28.42 10.74
16 4.66e-20 10.83 0.69 33.97 13.14
17 4.75e-03 14.21 5.4 25.49 20.01
18 2.89e-01 27.08 12.49 30.9 11.68
19 4.86e-53 12.53 1.02 31.69 3.32
20 3.35e-12 18.32 6.92 29.88 3.86

TABLE II
OBJECT PERMANENCE RESULTS

algorithm v1 v2
Original Enhanced Original Enhanced

average detection rate 28.03% 80.32% 28.03% 75.62%
p-value 6.11e-12 8.75e-10

higher for the enhanced image than for the original image. On
average, the ball was detected in 28.03% of the original frames,
80.32% of the frames enhanced using the first approach, and
75.62% of the frames enhanced using the second approach.
This shows that the proposed mechanism works well for
developing a sense of object permanence.

We suspect there are two reasons, why the results are not
perfect, i.e. 100% ball detection rate in every trial for the
enhanced images. First, the circle detection algorithm does not
work perfectly on these real image data. Its parameters could
be fine-tuned in order to further improve the result. Second, the
prediction of the NAO’s arm position does not always match
the actual arm position perfectly. See the first frame in figure
4 as an example. This is especially relevant when the second
pixel replacement strategy is used. Future work could address
this issue by increasing the size and variance of the training
data set and by improving the segmentation algorithm in order
to obtain less noisy training data.

V. CONCLUSIONS

We studied the development of fundamental cognitive skills
in robots, such as the capability to distinguish between ac-
tions generated by the robot itself and those generated by a
human subject, and the capability to generate and to maintain
enhanced perceptual information, where objects occluded by
the robot’s own body may still be visible. For this, a deep
convolutional neural network was trained as a forward model
to be able to predict visual consequences of robot actions
from the current sensorimotor state and intended movement of
the robot. We showed that these predictions can be employed



in two ways. Their absolute difference to the actual visual
input, i.e. the prediction error, serves as a cue for a sense of
agency for the robot. Furthermore, the predictions can be used
to generate an enhanced internal visual representation of the
world, in which objects originally obstructed by the robot’s
body parts are still visible, which enables the robot to develop
a sense of object permanence.

These results confirm those of our previous work, presented
in [13]: predictive models trained on self-generated sensori-
motor data can represent promising tools for the implemen-
tation of basic cognitive capabilities in artificial systems. As
described in the previous sections, we extended the work pre-
sented in [13] as follows: 1) we adopted a more sophisticated
forward model - implemented as a deep convolutional neural
network; 2) we used more complex real-world and real-robot
sensorimotor data for training and testing the model. The deep
convolutional neural network allowed us to work on high-
dimensional data (e.g. raw images), instead of hard-coded
features extracted from them (as in [13]). Moreover, generating
predictions on the high-dimensional image space can allow
easier visualisation of the outcomes of the model.

To further improve these results in terms of stability and
detection rate, different model architectures and improved
training may be considered as well as superior algorithms for
object detection. There are many potential extensions to this
work that shall be considered in the future. More efficient and
intelligent exploration strategies than random babbling [12]
could be used. In both training and experimental sessions,
more complex visual scenes would increase the difficulty of
the problem. This could be due to different backgrounds or
the robot moving around in its environment. For the object
permanence experiment, the object to be detected might be
moving instead of staying at the same position. Another chal-
lenge would be to increase the number of degrees of freedom,
for example by unlocking the NAO’s head joints or involving
its right arm, too. In order to deal with these extensions,
more complex models might be needed. It could be especially
useful to have the visual modality as an additional input to the
forward model. Finally, we expect the same approach to work
with other robots, too. Given proprioceptive data as well as
the corresponding visual data catching the robots’ body parts,
the same CNN forward model can be applied, potentially with
minor changes in the architecture accounting for different input
and output dimensionalities.
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