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Abstract— This paper tackles a common problem in human-
robot interaction: recognizing the intentions of a human in an
intuitive way. We present a system that is able to recognize
dynamic human gestures in an interaction scenario where a
humanoid robot visually observes the behavior of a human.
This allows for a natural human-robot communication where
no markers or technical devices are necessary on the side of
the human interactor. The system not only recognizes previously
learned gestures, but is also able to categorize and learn new
gestures in an unsupervised manner. The proposed approach
stands out due to its low computational cost and therefore
can be used with the potentially slow embedded hardware
of a humanoid robot. To demonstrate the possibilities of the
approach we arranged a human - humanoid interaction game
which consists of an alternating gesture-based communication.

I. INTRODUCTION

Human-robot interaction is one of the main challenges and
prerequisite for many applications in the field of robotics
today. The more robots become a part of our everyday life the
more it becomes crucial to develop simple and natural ways
to interact with them in a way comparable to the interaction
between humans. Human-humanoid interaction should there-
fore focus on intuitive ways of interaction such as natural
gestures and the robot should be able to sense these gestures
without any additional markers or technical equipment on
the side of the human interactor. Due to the similarity of
humanoid robots in looks, shape and morphology to humans
the humanoid is not only able to recognize human gestures,
but also to perform gestures by itself. This allows for a
gesture-based interaction between human and humanoid as
we will demonstrate with an interaction game.

To provide the ability of gesture recognition without
additional equipment the method has to rely on visual
observations captured by a video camera. A lot of work
had been done in the field of video-based human motion
analysis which led to many different approaches. Many of
these approaches are not feasible for implementation on a
humanoid due to their high computational costs. This is in
particular the case for the model-based approaches that try
to estimate a relationship between the observed image and a
3-dimensional model of the human body [10].

We therefore focus on gestures that can be described by
the hand’s movement within the image plane. This restriction
avoids the problem of reconstructing the 3-dimensional hu-
man posture from an image and leads to a fast and accurate
gesture recognition method.
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Promising methods in terms of fast calculation are color-
based approaches that model the human skin-color to identify
skin colored areas within the video frames to locate the
human’s head and hands. Color-based object localization and
tracking has been successfully applied to many computer
vision tasks but has the drawback of being prone to changes
in illumination conditions [9]. To avoid that a manual color
calibration is necessary, we introduced a first localization
step, where a human who entered the humanoid’s view was
located by the typical shade produced by a human face. The
colors within the area covered by the detected face were
used to initially calibrate the model of the skin-color under
the current illumination conditions.

The most common approach for the gesture recognition
task is based on Hidden Markov Models (HMM). Since
they proved to be excellent in their performance of handling
time series with time varying characteristics in the field
of speech recognition, they have been adopted to many
problems including gesture recognition. Typically they are
applied to time series of features that describe the gestures
like the trajectories of involved body parts [13].

In addition to the HMM-based approach we introduced
two simple approaches which use histograms and a decom-
position of the trajectories into basic motions as basis for
the recognition. These simple approaches turned out to be as
good as the HMM-based approach in the case of our sample
gesture set and could be calculated much more efficiently.

In the entire field of robotics learning plays an important
role. Robots should be able to adapt their behavior to their
environment and the needs of their users. This requirement
is met by the described approaches since they use supervised
learning techniques to learn new gestures based on a sample
data set. In addition, clustering methods for unsupervised
learning of new gestures were introduced which allowed
another kind of learning. They group unknown gestures into
clusters of gesture types due to their similarity without any
additional information. This should be understood as an
attempt to develop methods that enable a humanoid to learn
new behaviors by observing a human who not necessarily
pays attention to the humanoid.

II. VIDEO-BASED HUMAN MOTION TRACKING

In this section, we will describe the setup and methods for
recognizing and tracking persons from a video stream.

A. Methods for recognizing and tracking human gestures

Many gestures can be described by the motion patterns
generated by the upper body. The spatial movement of the



hands, in particular, contain meaningful information about a
performed gesture. We therefore focused on the time series of
the hands’ movements as a basis for our gesture recognition
system. It is known to be difficult to reconstruct the 3D
configuration of the human body parts if a 2D image is
the only data source [10]. In our approach, we avoided
this reconstruction which typically comes along with high
computational costs. Instead, we restricted our approach to
gestures that can be described by the hands’ movement
within the image plane.

A commonly used approach to locate objects within a
robot’s view is to use the color as the discriminating feature,
since it is fast and easy to compute but has, nevertheless, a
high discriminative power and is robust against geometrical
transformations [9]. Although most parts of the human body
are covered by clothes of varying colors and textures the
human face and the hands are typically bare. Hence it is
possible to use skin-color as a feature to locate and track the
face and the hands. By using color one must take, however,
into account the importance of illumination conditions. A
change of illumination can lead to a strong change in skin-
color in the image.

A commonly used method to locate and track humans
faces within video sequences is known as camshift [3]. We
follow this approach by modeling the skin color in a way
that adapts to varying illumination conditions and by using
the resulting model to identify the center and shape of skin
colored regions. There are two main differences to camshift:
First we explicitly exclude colors that are not likely to be skin
colors even under varying illumination. Secondly camshift
has a good performance since it examines only a search
window around the last object location. In our case we are
interested in tracking multiple skin colored objects within
the robots view. To avoid a mix-up of these objects and to
ensure a useful tracking result in cases where the location of
one object does not overlap between two consecutive frames
(e.g. low frame rate) we use an approach that locates all
skin colored objects within the robot’s view and that finds a
mapping between the actually located objects and the objects
within the last frame in a second step.

The range of possible colors the skin could adopt is
large. It is therefore not applicable as feature to locate
head and hands without an appropriate calibration to the
current illumination. We therefore used a different approach
to locate a human who is entering the robot’s view. This first
localization is performed using a modification of the Viola-
Jones face detector that relies on the typical pattern generated
by a human face within a gray scale image [7]. This approach
is considered too slow for real-time tracking of the face, but
fast enough to recognize the presence of an appearing face
within an acceptable delay. If a face is recognized, the colors
within the area covered by the face are used to initialize a
color model that describes the skin-color under the current
illumination conditions (see Fig. 1).

The resulting color model can be improved by considering
a pre-calculated set of colors which are not expected to
be skin-colors even under changing illumination conditions.

Fig. 1. The skin-colors within the area covered by a detected face
(visualized as a green circle) form a compact cluster within the normalized
RGB color space

Therefore, we pre-calculated the area of all possible skin-
colors under a certain limited illumination variation which is
called skin locus [9]. The shape of the skin locus is camera-
dependent and can be determined by manually selecting skin-
colored regions within a set of images taken under varying
illumination cases. The skin locus is described within the
normalized RGB color space, because it has been shown that
the skin colors of different ethnicities overlap and form a
small compact cluster [9]. The normalized RGB coordinates
can be calculated as

nR =
R

R + G + B
; nG =

G

R + G + B
; nB =

B

R + G + B

where R, G and B are the components of the RGB model.
It is sufficient to use only the two components nR and nB
due to the redundancy nR + nG + nB = 1.

A single Gaussian distribution is used for the color model
that describes the skin-color during the current illumination
conditions within the color space spanned by the normalized
RGB components nR and nB. The model is initially fitted
to the colors within the area of a detected face and then
truncated to not exceed the skin locus. To handle changes
within the illumination conditions during the tracking, the
skin-color model is periodically adapted toward the colors
within the area currently covered by the estimated face. This
adaptation is performed by using exponential smoothing,
whereas the skin locus is taken into account to ensure that
the color model does not adapt to non-skin objects.

Using the color model we localized skin-colored, con-
nected components within the image which are called blobs.
To perform a suitable tracking of skin-colored objects within
the scene, we hypothesized a relation between the currently
observed blobs and a set of skin-colored objects we were
tracking. This is done following an approach described in
[1] which can handle multiple skin-colored objects that may
overlap each other considering a possibly moving camera.
The spatial distribution of the currently tracked object is
described by an ellipse (see Fig. 2). In the original approach
the distances between each point that belongs to a blob and
the elliptic models of each tracked object are calculated.
Since this pixel-wise distance calculation is too inefficient to
be calculated on the embedded hardware of many humanoid
robots, we modified the approach to reduce the distance
calculations. We therefore calculated the oriented bounding
boxes of all tracked objects and all observed blobs. Based
on a collision detection of the oriented bounding boxes we



were able to reduce the pixel-wise distance calculation to the
blobs which are covered by multiple objects.

Fig. 2. Currently tracked skin-colored objects described as ellipses.

Within the set of skin-colored objects the objects that
represent the head and the hands of the observed human
are determined. To simplify this step and to avoid the need
of multiple color models associated with different people’s
skin we assume that only one person is within the robot’s
view.For each of the body parts we are selecting the object
that is most similar to the object that described the body part
during the last time step, where the similarity is considered
in terms of spatial adjacency and shape similarity. The most
similar object is regarded as the current observation of the
body part and is used as input for a Kalman filter [6]. The
initialization of the tracking of the head is done by using
the initially detected face as first observation. A hand object
is initialized by using the largest object that is visible for
some time without changing its location too much. To avoid
a mix-up of the head and the hands, some additional rules
are used for differentiation based on common configurations
of the body parts and the fact that the head is usually more
stable regarding its position than the gesticulating hands. To
give an impression of the tracking results Fig. 3 shows some
sample frames of the tracking of a human’s head and hands
during a waving gesture.

Fig. 3. Tracking of the head and the hands during a waving gesture

B. Feature selection

The tracking of a human head and hands within the
image are used as basis for the gesture recognition. To
extract features that describe the observed gestures in an
appropriate way, we applied some additional preprocessing
steps to the resulting location time series of the body parts.
The first step is a normalization which is used to compensate
different distances and spatial offsets of the gesticulating
human within the robot’s view. The head’s position and size

is used as reference for the normalization. The positions of
the hands are transformed to coordinates that are relative
to the head’s position and scaled in proportion to the head’s
width. If a hand’s position exceeds a circular area around the
head it is truncated. The radius of this circular area reflects
the typical proportion of a human’s head width and arm’s
length. As a result we obtained a time series of positions
within a circular area which is transformed to have an origin
of (0, 0) and a radius of 1.

The next preprocessing step is used to identify segments
within the continuous sequence of normalized positions
which describe a single gesture. To make this segmentation
possible we assumed that the gesticulating person returns to
a resting posture between performing gestures. The person
remains in the resting posture if both arms hang down beside
the torso. Therefore, a gesture is defined as any segment of
the continuous sequence of normalized positions where at
least one hand is not located within an area describing the
possible resting positions.

After the normalization and segmentation each gesture is
described by the time series of two hand positions. In a
series of comparative experiments we found that the best
way to encode this information for a further processing is to
describe the position as well as the direction and velocity of
movement for each time step by using the current position
and motion vector. The positions and motion vectors of
both hands are alternately inserted into a common feature
sequence, whereby the artificial position (−1,−1) and the
motion vector (−1,−1) are inserted if a hand is currently
not tracked. Finally, if a method is used for further processing
that cannot handle continuous values then the Linde-Buzo-
Gray (LBG) method [8] for vector quantization is applied
to transform the time series of continuous values to a time
series of discrete symbols (see Fig. 4).

Fig. 4. Results of the Linde-Buzo-Gray vector quantization method used
to split the normalized feature space into 16, 32 and 64 sectors that can be
used to transform the continuous features into discrete symbols

C. Basic Motions

A higher abstraction level to represent the observed ges-
tures than the described feature sequence can be achieved
by a decomposition of the gestures into a set of basic
motions. This decomposition is going along with a more
compact representation of the gestures which turns out to be
appropriate as basis for a reliable gesture recognition. A basic
motion is defined as a part of one hand’s movement without
a significant change of the moving direction. To decompose
one hand’s movement into basic motions we determined the



positions with a significant change in movement and approx-
imated the motion in-between with directed line segments,
which we called the basic motions. Each basic motion is
described by the position where it starts and the position
where it ends. This leads to a sequence of directed line
segments that describe the important movements of a hand
while ignoring the unimportant variation of the movement
in-between.

Fig. 5. Decomposition of the trajectory of a waving gesture into basic
motion segments

III. LEARNING OF GESTURES

In this section, we will describe the methods applied to
the extracted features for learning and recognizing gestures.

A. Experimental setup and choice of gestures

To ensure that our method can be calculated in real-time
on a humanoid robot we focused on gestures that can be
described by the movement of a human’s hands within the
image plane. This condition restricts the gestures we may
use to such cases where the gesticulating person is frontally
oriented toward the humanoid and uses “large-scale” move-
ments of the hands. While people typically use mimic and
finger gestures of smaller size during a conversation, they use
“large-scale” movements if they try to gesticulate over large
spatial distances. Therefore, we choose eight sample gestures
out of a set of gestures used by construction workers to
instruct vehicle drivers (see figure 6). To avoid accidents they
ensure an unmistakable communication by using gestures
that fulfill the described conditions.

The type of gestures we are dealing with is distinct from
the types considered in existing approaches used for visual
gesture-based human-robot interaction. Most approaches use
hand signs as gestures. Others, that use the tracking of skin-
colored areas focus on signs that are “drawn” with one hand
within the image area. The approach described in [5] handles
more natural gestures that can be expressed by the human
posture, as in our case, but is limited to static poses.

The 8 different gestures were performed by 9 different
persons and recorded with a video camera. This resulted in
a database of 212 gestures in total. The recorded persons
wore normal clothes which covered the arms and legs so
that the face and the hands were the only uncovered parts of
the body. They were asked to perform the gestures slowly
and make sure that the palms of their hands were always
orientated toward the camera. Some sample images taken

Fig. 6. Set of sample gestures

Fig. 7. Sample pictures from the video capturing of 9 persons performing
212 gestures of 8 different types

from the recorded videos are shown in Fig. 7 to give an
impression of the conditions during the video capturing.

B. Supervised learning of a set of gestures

A widely-used set of methods for the gesture recognition
task are Hidden Markov Models (HMM) [13]. They use
a state machine of hidden states to represent time-varying
changes of the modeled process. Each hidden state is linked
with a distribution that describes the probability of observing
a value or symbol while the hidden state is active. If the
HMM changes its hidden state, this is going together with a
change of HMM’s output probabilities. If these probabilities
are described by a single Gaussian distribution or by a
mixture of many the HMMs are called “Mixtures of Gaussian
Hidden Markov Models” (MHMM). The MHMMs are used
to model time series of continuous values. In contrast, there
is another class of HMMs that is used to model time series
of discrete symbols. For this purpose they describe the
probability of each of the symbols to be observed during each
hidden state. This kind of model is called a “Discrete Hidden
Markov Model” (DHMM). To be able to use DHMMs to
recognize gestures we have to express the gestures as a
sequence of discrete symbols. This can be done by using
a vector quantization method that transforms a sequence of
continuous features into a sequence of discrete symbols (e.g.
the LBG method [8]).

During our experiments to determine the best number of
hidden states for the DHMMs used to recognize the sample
gestures, we frequently observed that we obtained the best
results when only using one hidden state. This case reduces
the complexity of a DHMM since there are no transitions
between hidden states. Such a simple DHMM consists of
only one discrete distribution that describes the observation
probability of each possible symbol. It is obvious that such



a DHMM can be expressed in terms of a histogram with
a bin for each symbol that describes the symbol’s relative
frequency and thus its estimated observation probability.
An advantage of using a histogram is the avoidance of
costly methods to train HMMs. We therefore considered
the histogram-based gesture recognition as a fast alternative
solution. This approach can be used to recognize gestures
that can be described by a process without temporally
changing characteristics - as it seems to be the case for our
sample gestures.

C. Learning by observation

In addition to the approach described in the last section
that allows to learn gestures in a supervised manner from a
data set where each gesture type is known in advance we de-
veloped a method to learn unknown gestures by observation.
Therefore, it is possible to perform a sequence of gestures
not known to the humanoid and it has the ability to learn
new gesture types by grouping the presented gestures. This
allows the humanoid to learn observed gestures without any
additional information. Moreover, it is an attempt to develop
methods that enable a humanoid to learn new behaviors
by observing a human who not necessarily pays attention
to the humanoid. In this sense it is a modification of the
famous “programming by demonstration” [4] concept toward
a “learning by observation” concept.

D. Clustering Methods

Since the “learning by observation” concept in our case is
nothing else but a typical unsupervised learning approach,
we compared the hierarchical clustering and the k-means
clustering applied to our data set of sample gestures. To
measure the agreement between the resulting clusters and the
real division into gesture types we used the adjusted Rand
index [11], a measure for similarity often used in clustering.
The possible resulting values of the adjusted Rand index
range from 0 to 1, whereby large values stand for a great
similarity between the clusters and the real division into
gestures.

Our first approach to describe the gesture similarities
is to encode the gestures as vectors of the same length.
Using such an encoding we could apply common metrics
to calculate the distance between the gestures, hence their
similarity. To encode the gestures as vectors we fitted one of
the models which we described in the previous subsection
(HMM or histogram) for each single gesture. We then used
all parameters of each model to build a vector representing
the corresponding gesture. We used a principle components
analysis (PCA) to reduce the number of vector components
as much as possible by keeping simultaneously at least 95%
of the original data’s variance. The city-block-metric-based
distances between the resulting vectors were used to calculate
the distances between the corresponding gestures.

As another approach to calculate the similarity between
the gestures we defined a distance measurement based on
the representation of the gestures as basic motions. Keeping
the observation in mind that the gestures of our sample set

could be recognized by histogram-based approaches without
modeling time-varying dynamics, we did not consider any
order within the basic motions. Instead, we defined the
distance between two gestures as the mean of the minimum
distances of every basic motion to all basic motions of the
other gesture. To build this distance we took into account
the pairwise most similar basic motions of each one of the
compared gestures.

Based on our findings that a hierarchical cluster analysis
using the basic-motion-based distance measurement leads
to the best results (as will be described in section IV) we
developed an online clustering method that can be used for
our initially proposed “learning by observation” scenario.
We used the combination of a hierarchical cluster analysis
and the basic-motion-based distance measurement as core
for a procedure to identify gesture types within a sequence
of unknown gestures. Therefore, the procedure calculates
clusters within the gestures whenever a new gesture was
observed. The calculation of the clusters consists of the
following steps:

1) The new gesture is assigned to the cluster whose
gestures are most similar on average.

2) If a hierarchical cluster analysis can be used to form
two clearly distinct sub-clusters within the cluster the
new gesture has been assigned to, these sub-clusters
are used to build two new gesture types.

3) From each gesture type the gesture that has the smallest
average distance to all other gestures of the same type
is chosen to represent the cluster. Each gesture that
was not chosen to represent a cluster is assigned to the
cluster whose representing gesture is the most similar.

4) If the average distance between the gestures of two
types becomes clearly smaller than the average dis-
tances between the other types then the two types are
merged together.

5) If a gesture type contains a very small amount of
gestures (e.g. less than 3) it is deleted and its gestures
are assigned each to that cluster whose gestures are
most similar on average.

IV. RESULTS

In this section, we will first describe the accuracy we
achieved using the described methods to recognize the set of
sample gestures. Then we will present a simple interaction
game between a human and a humanoid robot as application
of the proposed method.

A. Accuracy of the gesture recognition

1) Recognizing a fixed gesture set: We used the HMMs
and histograms to prove their performance in the gesture
recognition task regarding our sample gesture set. This was
done in a typical supervised manner. We used the data set of
212 gestures performed by 9 different persons covering all 8
gesture types as described in the experimental setup section.
Based on this data set we compared different recognition
methods using cross-validation in a “leave-one-person-out”
manner. In the case of the HMM-based modeling as well



as in the case of a histogram-based modeling we used the
training data to calculate a model for each type of gesture
within the sample gesture set. These models were then used
to recognize the 9th person’s gestures by assigning each
to that gesture type whose model describes it in the best
way. The best results we achieved for each model type are
given by a recognition rate of approximately 0.7 for DHMM,
0.9 for MHMM and 0.9 for histogram-based methods.In
the case of the DHMM we used 4 hidden states and the
vector quantization into 256 symbols. The MHMM used 4
hidden states, too, and the histogram-based approach used the
same vector quantization as in the case of the DHMM. Our
result shows a comparable performance for the MHMM and
the histogram-based approach, namely a recognition rate of
approx. 0.9 (in comparison to 1/8 for a random guess). This
result can be expected to become better in the case when
the gesticulating person gains experience with the gesture
recognition system.

2) Learning unknown gestures by observation: To evalu-
ate the quality of the different cluster methods we applied
them to the 212 gestures of the sample data set. To that
end, the similarity between these gestures was represented
by the different approaches described above to determine an
appropriate combination of clustering method and gesture
representation. The clustering was aimed at achieving 8
clusters which correspond to the number of gesture-types
within the data set. This pre-defined number of gesture types
is normally not known, but used in this case to compare the
results.

The results of the comparison between the cluster anal-
ysis methods applied to the different representations of the
gesture’s similarities showed the best results when using the
parameters of DHMMs trained for each gesture in the case of
representing each gesture as a vector. In this case the k-means
method which produced a mean adjusted Rand index of
approx. 0.75 was slightly better than the hierarchical method
that produced an adjusted Rand index of approx. 0.70. In
the case of the basic-motion-based distance measurement the
hierarchical method was the better one producing an adjusted
Rand index of approx. 0.8, whereas the k-means method
produced a mean adjusted Rand index of approx. 0.65.
Comparing the methods, the hierarchical cluster analysis
might be preferred, because it produced similar or better
results without a need to restart the calculation several times
with different random initializations as it is the case with
the k-means method. When comparing the representation
of the gesture similarities we found that the basic-motion-
based distance measurement outperformed the vector-based
approach and had the additional advantage that its calculation
is noticeably faster than the vector-based approach because
it does not need to fit a DHMM for each single gesture.

To evaluate the online cluster method we generated ran-
dom sequences from the data set of 212 gestures. For each
random sequence we randomly chose 5 gestures of each
gesture type and inserted them in random order into the
sequence. Using the generated random sequences we per-
formed a grid-search-based optimization of the parameters

that controled the details of the online clustering procedure.
As result we obtained a parameter set that led to an adjusted
Rand index of 0.70 on average by clustering 50 random
sequences. To give an idea of this result we visualized the
result for 8 randomly chosen random sequences in Fig.
8. Each disk of this visualization represents one gesture
whereas the spatial distribution into groups shows the result
of the online clustering procedure, and the color of each
disk represents its gesture type. The visualized results of the
8 chosen sequences are varying regarding their quality. The
true number of gesture types was achieved in 4 cases. The
other cases are differing by one type from the true number
(3 x 7 and 1 x 9 types). The quality of the assignment from
the gestures to the types is varying as well. The best result is
shown in the lower left corner where the 8 resulting clusters
are corresponding unambiguously to the gesture types and
only 3 gestures out of the 40 are assigned to the wrong type.
The other tests show a less clear clustering but the gestures
are far from being randomly distributed.

Fig. 8. Visualization of the unsupervised online learning result of eight
random sequences of gestures

B. Application to a human-robot interaction scenario

The method for extracting and learning human gestures
from video streams described above has already been opti-
mized for implementation on a humanoid robot and is tested
in the interaction game scenario described in this section.

1) Humanoid robot: The humanoid robot used in these
experiments is a Nao [14] from Aldebaran Robotics with
the following hard- and software:

• AMD GEODE 500 MHz processor, 256 MB SDRAM
• Embedded Linux (32bit x86)
• video camera (640x480 resolution at 30 fps)
• Universal Real-time Behavior Interface (URBI) [2]
To allow for a real-time gesture recognition we improved

the runtime of the proposed method by downsampling the
image resolution to 160x120 and changing the image rep-
resentation to a compact run length encoding by the first
processing step.

2) Interaction game: To give an impression of possible
applications of the proposed gesture recognition method,
we arranged a gesture-based interaction game. To demon-
strate the humanoid’s gesture recognition skill as well as its
ability to use its human-like shape to perform gestures by
itself, the game consists of alternating gesture recognition
and presentation tasks for both participants. The humanoid



opens the game by presenting one gesture of the 8 sample
gesture types, which should be repeated by the human. The
humanoid then uses its speech synthesis capability to give
a feedback if the recognition result of the observed answer
gesture matches the gesture type that was initially performed
by the humanoid. Now the participants change their roles
and the human presents a gesture which is answered by
the humanoid that is performing the gesture type which
it has recognized. These role changes can be repeated in
alternation.

Fig. 9. An interaction game demonstrates a gesture-based mutual human-
humanoid interaction

V. CONCLUSIONS AND FUTURE WORK
A. Conclusions

By using the proposed approach it is possible to perform a
real-time visual recognition of dynamic human gestures with
high accuracy. Since there is no need of additional devices
it provides a simple and natural kind of human-humanoid
communication. To achieve an accurate real-time recognition
based on the potentially slow embedded hardware of a
humanoid we focused on gestures that can be described by
the hands’ motions within the image plane. This is a strong
restriction but it allows to avoid the hard reconstruction task
of 3-dimensional body configurations using only an image as
information source. The used sample gesture set shows, that
there are simple and natural gestures that fulfill the constraint
and therefore can be used as basis for a suitable interaction.

The results of the comparison of different methods for
supervised gesture learning and recognition showed similar
results for the HMM- and the histogram-based approaches. It
is striking that the histogram-based approach, which is much
simpler than the HMM approach, results in a comparable
performance in the case of our sample gesture set. This
allows to avoid the non-linear optimization problem to train
HMMs and leads to an efficient training procedure. These
findings led to a similar simple solution for the proposed
unsupervised “learning by observation” task. By calculating
the distances of gestures based on their decomposition into
basic motions without considering their timely order, we
achieved a powerful and simple solution for the clustering
task. The online clustering method that is based on the simple
distance measurement of gestures showed promising results.

The implementation on the humanoid robot Nao demon-
strated that the proposed method could successfully be used

to equip humanoids with gesture recognition skills. We used
these skills to give an impression of the possibilities of a
gesture-based human-humanoid interaction by arranging an
appropriate interaction game.

B. Future Works

The presented approach of learning by observation allows
learning the recognition of unknown gestures without an
explicit training session. Therefore it provides a possibility
to increase the set of known gestures continuously. It would
be desirable to extend this skill in a way that the humanoid
is not only able to recognize the new gestures but also to
perform them in addition to the predefined set of gestures.
This would be a typical human-robot imitation task [12]
which seems to be easy to achieve when using the gestures
we focused on. Since the gestures are described by the
hands’ movement parallel to the human’s orientation we can
easily set up a relation between the observed hand positions
and the humanoid’s posture. Using such an imitation skill
the humanoid would be able to give visual feedback of an
observed gesture which could be used to verify that the
gesture was observed correctly.
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